No Arabic abstract
The collision of two plasma clouds at a speed that exceeds the ion acoustic speed can result in the formation of shocks. This phenomenon is observed not only in astrophysical scenarios such as the propagation of supernova remnant (SNR) blast shells into the interstellar medium, but also in laboratory-based laser-plasma experiments. These experiments and supporting simulations are thus seen as an attractive platform for the small-scale reproduction and study of astrophysical shocks in the laboratory. We model two plasma clouds, which consist of electrons and ions, with a 2D PIC simulation. The ion temperatures of both clouds differ by a factor of 10. Both clouds collide at a speed, which is realistic for laboratory studies and for SNR shocks in their late evolution phase like that of RCW86. A magnetic field, which is orthogonal to the simulation plane, has a strength that is comparable to that at SNR shocks. A forward shock forms between the overlap layer of both plasma clouds and the cloud with the cooler ions. A large-amplitude ion acoustic wave is observed between the overlap layer and the cloud with the hotter ions. It does not steepen into a reverse shock, because its speed is below the ion acoustic speed. A gradient of the magnetic field amplitude builds up close to the forward shock as it compresses the magnetic field. This gradient gives rise to an electron drift that is fast enough to trigger an instability. Electrostatic ion acoustic wave turbulence develops ahead of the shock. It widens its transition layer and thermalizes the ions, but the forward shock remains intact.
Energetic electromagnetic emissions by astrophysical jets like those that are launched during the collapse of a massive star and trigger gamma-ray bursts (GRBs) are partially attributed to relativistic internal shocks. The shocks are mediated in the collisionless plasma of such jets by the filamentation instability of counterstreaming particle beams. The filamentation instability grows fastest only if the beams move at a relativistic relative speed. We model here with a particle-in-cell (PIC) simulation the collision of two cold pair clouds at the speed c/2 (c: speed of light). We demonstrate that the two-stream instability outgrows the filamentation instability for this speed and is thus responsible for the shock formation. The incomplete thermalization of the upstream plasma by its quasi-electrostatic waves allows other instabilities to grow. A shock transition layer forms, in which a filamentation instability modulates the plasma far upstream of the shock. The inflowing upstream plasma is progressively heated by a two-stream instability closer to the shock and compressed to the expected downstream density by the Weibel instability. The strong magnetic field due to the latter is confined to a layer 10 electron skin depths wide.
Slow-mode shocks are important in understanding fast magnetic reconnection, jet formation and heating in the solar atmosphere, and other astrophysical systems. The atmospheric conditions in the solar chromosphere allow both ionised and neutral particles to exist and interact. Under such conditions, fine substructures exist within slow-mode shocks due to the decoupling and recoupling of the plasma and neutral species. We study numerically the fine substructure within slow-mode shocks in a partially ionised plasma, in particular, analysing the formation of an intermediate transition within the slow-mode shock. High-resolution 1D numerical simulations are performed using the (Punderline{I}P) code using a two-fluid approach. We discover that long-lived intermediate (Alfven) shocks can form within the slow-mode shock, where there is a shock transition from above to below the Alfven speed and a reversal of the magnetic field across the shock front. The collisional coupling provides frictional heating to the neutral fluid, resulting in a Sedov-Taylor-like expansion with overshoots in the neutral velocity and neutral density. The increase in density results in a decrease of the Alfven speed and with this the plasma inflow is accelerated to above the Alfven speed within the finite width of the shock leading to the intermediate transition. This process occurs for a wide range of physical parameters and an intermediate shock is present for all investigated values of plasma-$beta$, neutral fraction, and magnetic angle. As time advances the magnitude of the magnetic field reversal decreases since the neutral pressure cannot balance the Lorentz force. The intermediate shock is long-lived enough to be considered a physical structure, independent of the initial conditions.
A rigorous theoretical investigation has been made on the nonlinear propagation of dust-ion-acoustic shock waves in a multi-component magnetized pair-ion plasma having inertial warm positive and negative ions, inertialess non-thermal electrons and positrons, and static negatively charged massive dust grains. The Burgers equation is derived by employing reductive perturbation method. The plasma model supports both positive and negative shock structures in the presence of static negatively charged massive dust grains. It is found that the steepness of both positive and negative shock profiles declines with the increase of ion kinematic viscosity without affecting the height, and the temperature of the electrons enhances the amplitude of the shock profile. It is also observed that the increase in oblique angle rises the height of the positive shock profile, and the height of the positive shock wave increases with the number density of positron. The application of the findings from present investigation are briefly discussed.
We examine with particle-in-cell (PIC) simulations how a parallel shock in pair plasma reacts to upstream waves, which are driven by escaping downstream particles. Initially, the shock is sustained in the two-dimensional simulation by a magnetic filamentation (beam-Weibel) instability. Escaping particles drive an electrostatic beam instability upstream. Modifications of the upstream plasma by these waves hardly affect the shock. In time, a decreasing density and increasing temperature of the escaping particles quench the beam instability. A larger thermal energy along than perpendicular to the magnetic field destabilizes the pair-Alfven mode. In the rest frame of the upstream plasma, the group velocity of the growing pair-Alfven waves is below that of the shock and the latter catches up with the waves. Accumulating pair-Alfven waves gradually change the shock in the two-dimensional simulation from a Weibel-type shock into an Alfvenic shock with a Mach number that is about 6 for our initial conditions.
We present a statistical analysis of more than two thousand bipolar electrostatic solitary waves (ESW) collected from ten quasi-perpendicular Earths bow shock crossings by Magnetospheric Multiscale spacecraft. We developed and implemented a correction procedure for reconstruction of actual electric fields, velocities, and other properties of ESW from measurements, whose spatial scales are typically comparable with or smaller than spatial distance between voltage-sensitive probes. We determined the optimal ratio between frequency response factors of axial and spin plane antennas to be around 1.65/1.8. We found that more than 95% of the ESW in the Earths bow shock are of negative polarity and present an in depth analysis of properties of these ESW. They have spatial scales of about 10--100 m that is within a range of $lambda_{D}$ to $10lambda_{D}$, amplitudes typically below a few Volts that is below 0.1 of local electron temperature, and velocities below a few hundreds km/s in spacecraft and plasma rest frames that is on the order of local ion-acoustic speed. The spatial scales of ESW are distinctly correlated with local Debye length $lambda_{D}$. ESW with amplitudes of 5--30 V or 0.1--0.3 Te have the occurrence rate of a few percent. The ESW have electric fields generally oblique to local magnetic field and propagate highly oblique to shock normal ${bf N}$; more than 80% of ESW propagate within 30$^{circ}$ of the shock plane. In the shock plane, ESW typically propagate within a few tens of degrees of local magnetic field projection ${bf B}_{rm LM}$ onto the shock plane and preferentially opposite to ${bf N}times {bf B}_{rm LM}$. We argue that the ESW of negative polarity are ion phase space holes produced in a nonlinear stage of ion-ion ion-streaming instabilities. We estimated lifetimes of the ion holes to be 10--100 ms, or 1--10 km in terms of spatial distance.