Pauli spin matrices, Pauli group, commutators, anti-commutators and the Kronecker product are studied. Applications to eigenvalue problems, exponential functions of such matrices, spin Hamilton operators, mutually unbiased bases, Fermi operators and Bose operators are provided.
We generalize to multi-commutators the usual Lieb-Robinson bounds for commutators. In the spirit of constructive QFT, this is done so as to allow the use of combinatorics of minimally connected graphs (tree expansions) in order to estimate time-dependent multi-commutators for interacting fermions. Lieb-Robinson bounds for multi-commutators are effective mathematical tools to handle analytic aspects of the dynamics of quantum particles with interactions which are non-vanishing in the whole space and possibly time-dependent. To illustrate this, we prove that the bounds for multi-commutators of order three yield existence of fundamental solutions for the corresponding non-autonomous initial value problems for observables of interacting fermions on lattices. We further show how bounds for multi-commutators of an order higher than two can be used to study linear and non-linear responses of interacting fermions to external perturbations. All results also apply to quantum spin systems, with obvious modifications. However, we only explain the fermionic case in detail, in view of applications to microscopic quantum theory of electrical conduction discussed here and because this case is technically more involved.
Hankel operators lie at the junction of analytic and real-variables. We will explore this junction, from the point of view of Haar shifts and commutators. An decomposition of the commutator [H,b] into paraproducts is presented.
We establish the necessary and sufficient conditions for those symbols $b$ on the Heisenberg group $mathbb H^{n}$ for which the commutator with the Riesz transform is of Schatten class. Our main result generalises classical results of Peller, Janson--Wolff and Rochberg--Semmes, which address the same question in the Euclidean setting. Moreover, the approach that we develop bypasses the use of Fourier analysis, and can be applied to characterise that the commutator is of the Schatten class in other settings beyond Euclidean.
It is shown that product BMO of Chang and Fefferman, defined on the product of Euclidean spaces can be characterized by the multiparameter commutators of Riesz transforms. This extends a classical one-parameter result of Coifman, Rochberg, and Weiss, and at the same time extends the work of Lacey and Ferguson and Lacey and Terwilleger on multiparameter commutators with Hilbert transforms. The method of proof requires the real-variable methods throughout, which is new in the multi-parameter context.