Zero-energy Majorana states in a one-dimensional quantum wire with charge density wave instability


Abstract in English

One-dimensional lattice with strong spin-orbit interactions (SOI) and Zeeman magnetic field is shown to lead to the formation of a helical charge-density wave (CDW) state near half-filling. Interplay of the magnetic field, SOI constants and the CDW gap seems to support Majorana bound states under appropriate value of the external parameters. Explicit calculation of the quasi-particles wave functions supports a formation of the localized zero-energy state, bounded to the sample end-points. Symmetry classification of the system is provided. Relative value of the density of states shows a precise zero-energy peak at the center of the band in the non-trivial topological regime.

Download