We analyse the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite dimensional Lie algebras, MacMahon and Ruelle functions. A p-dimensional MacMahon function is the generating function of p-dimensional partitions of integers. These functions can be represented as amplitudes of a two-dimensional c=1 CFT. In this paper we show that p-dimensional MacMahon functions can be rewritten in terms of Ruelle spectral functions, whose spectrum is encoded in the Patterson-Selberg function of three dimensional hyperbolic geometry.