Do you want to publish a course? Click here

The detection of back-to-back proton pairs in Charged-Current neutrino interactions with the ArgoNeuT detector in the NuMI low energy beam line

115   0   0.0 ( 0 )
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Short range nucleon-nucleon correlations in nuclei (NN SRC) carry important information on nuclear structure and dynamics. NN SRC have been extensively probed through two-nucleon knock- out reactions in both pion and electron scattering experiments. We report here on the detection of two-nucleon knock-out events from neutrino interactions and discuss their topological features as possibly involving NN SRC content in the target argon nuclei. The ArgoNeuT detector in the Main Injector neutrino beam at Fermilab has recorded a sample of 30 fully reconstructed charged current events where the leading muon is accompanied by a pair of protons at the interaction vertex, 19 of which have both protons above the Fermi momentum of the Ar nucleus. Out of these 19 events, four are found with the two protons in a strictly back-to-back high momenta configuration directly observed in the final state and can be associated to nucleon Resonance pionless mechanisms involving a pre-existing short range correlated np pair in the nucleus. Another fraction (four events) of the remaining 15 events have a reconstructed back-to-back configuration of a np pair in the initial state, a signature compatible with one-body Quasi Elastic interaction on a neutron in a SRC pair. The detection of these two subsamples of the collected (mu- + 2p) events suggests that mechanisms directly involving nucleon-nucleon SRC pairs in the nucleus are active and can be efficiently explored in neutrino-argon interactions with the LAr TPC technology.



rate research

Read More

The ArgoNeuT liquid argon time projection chamber has collected thousands of neutrino and antineutrino events during an extended run period in the NuMI beam-line at Fermilab. This paper focuses on the main aspects of the detector layout and related technical features, including the cryogenic equipment, time projection chamber, read-out electronics, and off-line data treatment. The detector commissioning phase, physics run, and first neutrino event displays are also reported. The characterization of the main working parameters of the detector during data-taking, the ionization electron drift velocity and lifetime in liquid argon, as obtained from through-going muon data complete the present report.
This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.
191 - Joshua Spitz 2010
ArgoNeuT, a Liquid Argon Time Projection Chamber in the NuMI beamline at Fermilab, has recently collected thousands of neutrino and anti-neutrino events between 0.1 and 10 GeV. The experiment will, among other things, measure the cross section of the neutrino and anti-neutrino Charged Current Quasi-Elastic interaction and analyze the vertex activity associated with such events. These topics are discussed along with ArgoNeuTs automated reconstruction software, currently capable of fully reconstructing the muon and finding the event vertex in neutrino interactions.
Double-polarization observables in the reaction $vec{e}p rightarrow evec{p}gamma{}$ have been measured at $Q^2=0.33 (GeV/c)^2$. The experiment was performed at the spectrometer setup of the A1 Collaboration using the 855 MeV polarized electron beam provided by the Mainz Microtron (MAMI) and a recoil proton polarimeter. From the double-polarization observables the structure function $P_{LT}^perp$ is extracted for the first time, with the value $(-15.4 pm 3.3 (stat.)^{+1.5}_{-2.4} (syst.)) GeV^{-2}$, using the low-energy theorem for Virtual Compton Sattering. This structure function provides a hitherto unmeasured linear combination of the generalized polarizabilities of the proton.
119 - AnJie Gao , Hai Tao Li , Ian Moult 2019
We present an operator based factorization formula for the transverse energy-energy correlator (TEEC) hadron collider event shape in the back-to-back (dijet) limit. This factorization formula exhibits a remarkably symmetric form, being a projection onto a scattering plane of a more standard transverse momentum dependent factorization. Soft radiation is incorporated through a dijet soft function, which can be elegantly obtained to next-to-next-to-leading order (NNLO) due to the symmetries of the problem. We present numerical results for the TEEC resummed to next-to-next-to-leading logarithm (NNLL) matched to fixed order at the LHC. Our results constitute the first NNLL resummation for a dijet event shape observable at a hadron collider, and the first analytic result for a hadron collider dijet soft function at NNLO. We anticipate that the theoretical simplicity of the TEEC observable will make it indispensable for precision studies of QCD at the LHC, and as a playground for theoretical studies of factorization and its violation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا