Do you want to publish a course? Click here

Fine structure of neutral acceptor states of isolated impurity in zinc-blende semiconductors

140   0   0.0 ( 0 )
 Added by Mikhail Nestoklon
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The properties of neutral acceptor states in zinc-blende semiconductors are re-examined in the frame of extended-basis $sp^3d^5s^*$ tight-binding model. The symmetry discrepancy between envelope function theory and atomistic calculations is explained in terms of over symmetric potential in current k$cdot$p approaches. Spherical harmonics decomposition of microscopic Local Density Of States (LDOS) allows for the direct analysis of the tight-binding results in terms of envelope function. Lifting of degeneracy by strain and electric field and their effect on LDOS is examined. The fine structure of magnetic impurity caused by exchange interaction of hole with impurity $d$-shell and its dependence on strain is studied. It is shown that exchange interaction by mixing heavy and light hole makes the ground state more isotropic. The results are important in the context of Scanning Tunneling Microscopy (STM) images of subsurface impurities.



rate research

Read More

We report on first-principles calculations of multilayers of zinc-blende half-metallic ferromagnets CrAs and CrSb with III-V and II-VI semiconductors, in the [001] orientation. We examine the ideal and tetragonalised structures, as well as the case of an intermixed interface. We find that, as a rule, half-metallicity can be conserved throughout the heterostructures, provided that the character of the local coordination and bonding is not disturbed. At the interfaces with semiconductors, we describe a mechanism that can give also a non-integer spin moment per interface transition atom, and derive a simple rule to evaluate it.
A novel method for the direct correlation at the nanoscale of structural and optical properties of single GaAs nanowires is reported. Nanowires consisting of 100% wurtzite and nanowires presenting zinc-blende/wurtzite polytypism are investigated by photoluminescence spectroscopy and transmission electron microscopy. The photoluminescence of wurtzite GaAs is consistent with a band gap of 1.5 eV. In the polytypic nanowires, it is shown that the regions that are predominantly composed of either zinc-blende or wurtzite phase show photoluminescence emission close to the bulk GaAs band gap, while regions composed of a nonperiodic superlattice of wurtzite and zinc-blende phases exhibit a redshift of the photoluminescence spectra as low as 1.455 eV. The dimensions of the quantum heterostructures are correlated with the light emission, allowing us to determine the band alignment between these two crystalline phases. Our first-principles electronic structure calculations within density functional theory, employing a hybrid-exchange functional, predict band offsets and effective masses in good agreement with experimental results.
The diamond and zinc-blende semiconductors are well-known and have been widely studied for decades. Yet, their electronic structure still surprises with unexpected topological properties of the valence bands. In this joint theoretical and experimental investigation we demonstrate for the benchmark compounds InSb and GaAs that the electronic structure features topological surface states below the Fermi energy. Our parity analysis shows that the spin-orbit split-off band near the valence band maximum exhibits a strong topologically non-trivial behavior characterized by the $mathcal{Z}_2$ invariants $(1;000)$. The non-trivial character emerges instantaneously with non-zero spin-orbit coupling, in contrast to the conventional topological phase transition mechanism. textit{Ab initio}-based tight-binding calculations resolve topological surface states in the occupied electronic structure of InSb and GaAs, further confirmed experimentally by soft X-ray angle-resolved photoemission from both materials. Our findings are valid for all other materials whose valence bands are adiabatically linked to those of InSb, i.e., many diamond and zinc-blende semiconductors, as well as other related materials, such as half-Heusler compounds.
Solid state physics and quantum electrodynamics with its ultra-relativistic (massless) particles meet, to their mutual beneit, in the electronic properties of one-dimensional carbon nanotubes as well as two-dimensional graphene or surfaces of topological insulators. However, clear experimental evidence for electronic states with conical dispersion relations in all three dimensions, conceivable in certain bulk materials, is still missing. In the present work, we fabricate and study a zinc-blend crystal, HgCdTe, at the point of the semiconductor-to-semimetal topological transition. Three-dimensional massless electrons with a velocity of about 10$^6$ m/s are observed in this material, as testifed by: (i) the dynamical conductivity which increases linearly with the photon frequency, (ii) in a magnetic field $B$, by a $sqrt{B}$ dependence of dipole-active inter-Landau-level resonances and (iii) the spin splitting of Landau levels, which follows a $sqrt{B}$ dependence, typical of ultra-relativistic particles but not really seen in any other electronic system so far.
Using the local spin-density approximation (LSDA) and the (non self-consistent) GW approach, the (quasi-particle) band structure is calculated for MnTe in zinc-blende geometry. Different parameters characterizing the electronic structure are computed for an antiferromagnetic and the ferromagnetic phase and compared with the experiment. The strong Hubbard-type repulsion on the Mn-3d orbitals and the p-d hybridization are seen to be responsible for substantial defects found in the LSDA picture. It is discussed to which extent these can be improved upon by means of the GW approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا