Relativistic mean-field (RMF) models have been widely used in the study of many hadronic frameworks because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality and, therefore, no problems related to superluminal speed of sound. With the aim of identifying the models which best satisfy well known properties of nuclear matter, we have analyzed $263$ parameterizations of seven different types of RMF models under three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives. One of these (SET1) is formed of the same constraints used in a recent work [M. Dutra et al., Phys. Rev. C 85, 035201 (2012)] in which we analyzed $240$ Skyrme parameterizations. The results pointed to $2$ models consistent with all constraints. By using another set of constraints, namely, SET2a, formed by the updat