No Arabic abstract
Electronic open-shell ground-state properties of selected alkali-metal (AM) - alkaline-earth-metal (AEM) polar molecules are investigated. We determine potential energy curves of the 2{Sigma}+ ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes (23Na, 39K, 85Rb) - (40Ca, 88Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.
A first principles study of the dynamics of $^6$Li($^{2}$S) + $^6$Li$^{174}$Yb($^2Sigma^+$)$ to ^6$Li$_2(^1Sigma^+$) + $^{174}$Yb($^1$S) reaction is presented at cold and ultracold temperatures. The computations involve determination and analytic fitting of a three-dimensional potential energy surface for the Li$_2$Yb system and quantum dynamics calculations of varying complexities, ranging from exact quantum dynamics within the close-coupling scheme, to statistical quantum treatment, and universal models. It is demonstrated that the two simplified methods yield zero-temperature limiting reaction rate coefficients in reasonable agreement with the full close-coupling calculations. The effect of the three-body term in the interaction potential is explored by comparing quantum dynamics results from a pairwise potential that neglects the three-body term to that derived from the full interaction potential. Inclusion of the three-body term in the close-coupling calculations was found to reduce the limiting rate coefficients by a factor of two. The reaction exoergicity populates vibrational levels as high as $v=19$ of the $^6$Li$_2$ molecule in the limit of zero collision energy. Product vibrational distributions from the close-coupling calculations reveal sensitivity to inclusion of three-body forces in the interaction potential. Overall, the results indicate that a simplified model based on the long-range potential is able to yield reliable values of the total reaction rate coefficient in the ultracold limit but a more rigorous approach based on statistical quantum or quantum close-coupling methods is desirable when product rovibrational distribution is required.
We report the measurement of the anisotropic AC polarizability of ultracold polar $^{40}$K$^{87}$Rb molecules in the ground and first rotationally excited states. Theoretical analysis of the polarizability agrees well with experimental findings. Although the polarizability can vary by more than 30%, a magic angle between the laser polarization and the quantization axis is found where the polarizability of the $|N=0,m_N=0>$ and the $|N=1,m_N=0>$ states match. At this angle, rotational decoherence due to the mismatch in trapping potentials is eliminated, and we observe a sharp increase in the coherence time. This paves the way for precise spectroscopic measurements and coherent manipulations of rotational states as a tool in the creation and probing of novel quantum many-body states of polar molecules.
We present electric dipole polarizabilities ($alpha_d$) of the alkali-metal negative ions, from H$^-$ to Fr$^-$, by employing four-component relativistic many-body methods. Differences in the results are shown by considering Dirac-Coulomb (DC) Hamiltonian, DC Hamiltonian with the Breit interaction, and DC Hamiltonian with the lower-order quantum electrodynamics interactions. At first, these interactions are included self-consistently in the Dirac-Hartree-Fock (DHF) method, and then electron correlation effects are incorporated over the DHF wave functions in the second-order many-body perturbation theory, random phase approximation and coupled-cluster (CC) theory. Roles of electron correlation effects and relativistic corrections are analyzed using the above many-body methods with size of the ions. We finally quote precise values of $alpha_d$ of the above negative ions by estimating uncertainties to the CC results, and compare them with other calculations wherever available.
The adsorption characteristics of alkali, alkaline earth and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon, are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, workfunction and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na and K, adsorb to hollow site without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene metalization of silicene takes place. Trends directly related to atomic size, adsorption height, workfunction and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline earth metals on silicene are entirely different from their adsorption on graphene. The adsorption of Be, Mg and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal and semiconducting behavior. For all metal adsorbates the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.
Recent improvements in experimental techniques for preparing ultracold molecules that contain alkali atoms (e.g., Li, Na, and K) have been reported. Based on these advances in ultracold molecules, new searches for the electric dipole moment of the electron and the scalar-pseudoscalar interaction can be proposed on such systems. We calculate the effective electric fields (Eeff) and the S-PS coefficients (Ws) of SrA and HgA (A = Li, Na, and K) molecules at the Dirac-Fock (DF) and the relativistic coupled cluster (RCC) levels. We elaborate on the following points: i) Basis set dependence of the molecular properties in HgA, ii) Analysis of Eeff and Ws in SrA and HgA, and comparison with their fluoride and hydride counterparts, iii) Ratio of Ws to Eeff (Ws/Eeff) at the DF and the correlation RCC levels of theory.