No Arabic abstract
We develop a novel method of replica-exchange molecular dynamics (REMD) simulation, mass-scaling REMD (MSREMD) method, which improves trajectory accuracy at high temperatures, and thereby contributes to numerical stability. In addition, the MSREMD method can also simplify a replica-exchange routine by eliminating velocity scaling. As a pilot system, a Lennard-Jones fluid is simulated with the new method. The results show that the MSREMD method improves the trajectory accuracy at high temperatures compared with the conventional REMD method. We analytically demonstrate that the MSREMD simulations can reproduce completely the same trajectories of the conventional REMD ones with shorter time steps at high temperatures in case of the Nose-Hoover thermostats. Accordingly, we can easily compare the computational costs of the REMD and MSREMD simulations. We conclude that the MSREMD method decreases the instability and optimizes the computational resources with simpler algorithm under the constant trajectory accuracy at all temperatures.
In finite-size scaling analyses of Monte Carlo simulations of second-order phase transitions one often needs an extended temperature/energy range around the critical point. By combining the replica-exchange algorithm with cluster updates and an adaptive routine to find the range of interest, we introduce a new flexible and powerful method for systematic investigations of critical phenomena. As a result, we gain two further orders of magnitude in the performance for 2D and 3D Ising models in comparison with the recently proposed Wang-Landau recursion for cluster algorithms based on the multibondic algorithm, which is already a great improvement over the standard multicanonical variant.
We propose a new method for molecular dynamics and Monte Carlo simulations, which is referred to as the replica-permutation method (RPM), to realize more efficient sampling than the replica-exchange method (REM).In RPM not only exchanges between two replicas but also permutations among more than two replicas are performed. Furthermore, instead of the Metropolis algorithm, the Suwa-Todo algorithm is employed for replica-permutation trials to minimize its rejection ratio. We applied RPM to particles in a double-well potential energy, Met-enkephalin in vacuum, and a C-peptide analog of ribonuclease A in explicit water. For a comparison purposes, replica-exchange molecular dynamics simulations were also performed. As a result, RPM sampled not only the temperature space but also the conformational space more efficiently than REM for all systems. From our simulations of C-peptide, we obtained the alpha-helix structure with salt-bridges between Gly2 and Arg10 which is known in experiments. Calculating its free-energy landscape, the folding pathway was revealed from an extended structure to the alpha-helix structure with the salt-bridges. We found that the folding pathway consists of the two steps: The first step is the salt-bridge formation step, and the second step is the alpha-helix formation step.
In the replica-exchange molecular dynamics method, where constant-temperature molecular dynamics simulations are performed in each replica, one usually rescales the momentum of each particle after replica exchange. This rescaling method had previously been worked out only for the Gaussian constraint method. In this letter, we present momentum rescaling formulae for four other commonly used constant-temperature algorithms, namely, Langevin dynamics, Andersen algorithm, Nos{e}-Hoover thermostat, and Nos{e}-Poincar{e} thermostat. The effectiveness of these rescaling methods is tested with a small biomolecular system, and it is shown that proper momentum rescaling is necessary to obtain correct results in the canonical ensemble.
We propose two efficient algorithms for configurational sampling of systems with rough energy landscape. The first one is a new method for the determination of the multicanonical weight factor. In this method a short replica-exchange simulation is performed and the multicanonical weight factor is obtained by the multiple-histogram reweighting techniques. The second one is a further extension of the first in which a replica-exchange multicanonical simulation is performed with a small number of replicas. These new algorithms are particularly useful for studying the protein folding problem.
We estimated the residual entropy of ice Ih by the recently developed simulation protocol, namely, the combination of Replica-Exchange Wang-Landau algorithm and Multicanonical Replica-Exchange Method. We employed a model with the nearest neighbor interactions on the three-dimensional hexagonal lattice, which satisfied the ice rules in the ground state. The results showed that our estimate of the residual entropy is found to be within 0.038 % of series expansion estimate by Nagle and within 0.000077 % of PEPS algorithm by Vanderstraeten. In this article, we not only give our latest estimate of the residual entropy of ice Ih but also discuss the importance of the uniformity of a random number generator in MC simulations.