Do you want to publish a course? Click here

Hydrogenation-induced ferromagnetism on graphite surfaces

144   0   0.0 ( 0 )
 Added by Juan Jose Palacios
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate the electronic structure and magnetic properties of hydrogenated graphite surfaces using van der Waals density functional theory (DFT) and model Hamiltonians. We find, as previously reported, that the interaction between hydrogen atoms on graphene favors adsorption on different sublattices along with an antiferromagnetic coupling of the induced magnetic moments. On the contrary, when hydrogenation takes place on the surface of graphene multilayers or graphite (Bernal stacking), the interaction between hydrogen atoms competes with the different adsorption energies of the two sublattices. This competition may result in all hydrogen atoms adsorbed on the same sublattice and, thereby, in a ferromagnetic state for low concentrations. Based on the exchange couplings obtained from the DFT calculations, we have also evaluated the Curie temperature by mapping this system onto an Ising-like model with randomly located spins. Remarkably, the long-range nature of the magnetic coupling in these systems makes the Curie temperature size dependent and larger than room temperature for typical concentrations and sizes.



rate research

Read More

We present a x-ray dichroism study of graphite surfaces that addresses the origin and magnitude of ferromagnetism in metal-free carbon. We find that, in addition to carbon $pi$ states, also hydrogen-mediated electronic states exhibit a net spin polarization with significant magnetic remanence at room temperature. The observed magnetism is restricted to the top $approx$10 nm of the irradiated sample where the actual magnetization reaches $ simeq 15$ emu/g at room temperature. We prove that the ferromagnetism found in metal-free untreated graphite is intrinsic and has a similar origin as the one found in proton bombarded graphite.
Graphite surfaces interact weakly with molecules compared to other conducting surfaces bringing the molecule-molecule interaction to the foreground. C$_{60}$ on highly oriented pyrolytic graphite is a model system for studying the molecular self-assembly on surfaces. Our scanning tunneling microscopy measurements at liquid nitrogen temperatures confirm the previously observed island growth mode. Our results indicate that there is an epitaxial relationship of the molecular islands and the substrate with three possible orientations of the islands. For one of these orientations, we determine this epitaxial relationship by analyzing in detail an image taken across a C$_{60}$ island step edge. In this image we have obtained high resolution on both the molecular island and the substrate. The result of this analysis is confirmed by two-dimensional Fourier analysis.
We studied, by scanning tunneling microscopy, the morphology of nanopits of monolayer depth created at graphite surfaces by hydrogen plasma etching under various conditions such as H$_2$ pressure, temperature, etching time, and RF power of the plasma generation. In addition to the known pressure-induced transition of the nanopit morphology, we found a sharp temperature-induced transition from many small rather round nanopits of ~150 nm size to few large hexagonal ones of 300-600 nm within a narrow temperature range. The remote and direct plasma modes switching mechanism, which was proposed to explain the pressure-induced transition, is not directly applicable to this newly found transition. Scanning tunneling spectroscopy (STS) measurements of edges of the hexagonal nanopits fabricated at graphite surfaces by this method show clear signatures of the peculiar electronic state localized at the zigzag edge (edge state), i.e., a prominent peak near the Fermi energy accompanied by suppressions on either side in the local density of states. These observations indicate that the hexagonal nanopits consist of a high density of zigzag edges. The STS data also revealed a domain structure of the edge state in which the electronic state varies over a length scale of ~3 nm along the edge. The present study will pave the way for microscopic understanding of the anisotropic etching mechanism and of spin polarization in zigzag nanoribbons which are promising key elements for future graphene nanoelectronics.
Hydrogenated diamond has been regarded as a promising material in electronic device applications, especially in field-effect transistors (FETs). However, the quality of diamond hydrogenation has not yet been established, nor has the specific orientation that would provide the optimum hydrogen coverage. In addition, most theoretical work in the literature use models with 100% hydrogenated diamond surfaces to study electronic properties, which is far from the experimentally observed hydrogen coverage. In this work, we have carried out a detailed study using fully atomistic reactive molecular dynamics (MD) simulations on low indices diamond surfaces i.e. (001), (013), (110), (113) and (111) to evaluate the quality and hydrogenation thresholds on different diamond surfaces and their possible effects on electronic properties. Our simulation results indicate that the 100% surface hydrogenation in these surfaces is hard to achieve because of the steric repulsion between the terminated hydrogen atoms. Among all the considered surfaces, the (001), (110), and (113) surfaces incorporate a larger number of hydrogen atoms and passivate the surface dangling bonds. Our results on hydrogen stability also suggest that these surfaces with optimum hydrogen coverage are robust under extreme conditions and could provide homogeneous p-type surface conductivity in the diamond surfaces, a key requirement for high-field, high-frequency device applications.
We have developed a novel method for crystalline hydrogenation of graphene on the nanoscale. Molecular hydrogen was physisorbed at 5 K onto pristine graphene islands grown on Cu(111) in ultrahigh vacuum. Field emission local to the tip of a scanning tunneling microscope dissociates H$_2$ and results in hydrogenated graphene. At lower coverage, isolated point defects are found on the graphene and are attributed to chemisorbed H on top and bottom surfaces. Repeated H$_2$ exposure and field emission yielded patches and then complete coverage of a crystalline $sqrt{3}$ $times$ $sqrt{3}$ R30{deg} phase, as well as less densely packed 3 $times$ 3 and 4 $times$ 4 structures. The hydrogenation can be reversed by imaging with higher bias voltage.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا