Evaluating charge noise acting on semiconductor quantum dots in the circuit quantum electrodynamics architecture


Abstract in English

We evaluate the charge noise acting on a GaAs/GaAlAs based semiconductor double quantum dot dipole-coupled to the voltage oscillations of a superconducting transmission line resonator. The in-phase ($I$) and the quadrature ($Q$) components of the microwave tone transmitted through the resonator are sensitive to charging events in the surrounding environment of the double dot with an optimum sensitivity of $8.5times10^{-5} mbox{e}/sqrt{mbox{Hz}}$. A low frequency $1/f$ type noise spectrum combined with a white noise level of $6.6times10^{-6}$ $mbox{e}^2/mbox{Hz}$ above $1$ Hz is extracted, consistent with previous results obtained with quantum point contact charge detectors on similar heterostructures. The slope of the $1/f$ noise allows to extract a lower bound for the double-dot charge qubit dephasing rate which we compare to the one extracted from a Jaynes-Cummings Hamiltonian approach. The two rates are found to be similar emphasizing that charge noise is the main source of dephasing in our system.

Download