Do you want to publish a course? Click here

Electronic and Transport Property of Phosphorene Nanoribbon

99   0   0.0 ( 0 )
 Added by Lei Shen
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

By combining density functional theory and nonequilibrium Greens function, we study the electronic and transport properties of monolayer black phosphorus nanoribbons (PNRs). First, we investigate the band-gap of PNRs and its modulation by the ribbon width and an external transverse electric feld. Our calculations indicate a giant Stark effect in PNRs, which can switch on transport channels of semiconducting PNRs under low bias, inducing an insulator-metal-transition. Next, we study the transport channels in PNRs via the calculations of the current density and local electron transmission pathway. In contrast to graphene and MoS_2 nanoribbons, the carrier transport channels under low bias are mainly located in the interior of both armchair and zigzag PNRs, and immune to a small amount of edge defects. Lastly, a device of the PNR-based dual-gate feld-effect-transistor, with high on/off-ratio of 10^3, is proposed based on the giant electric feld tuning effect.



rate research

Read More

We investigate the conductivity $sigma$ of graphene nanoribbons with zigzag edges as a function of Fermi energy $E_F$ in the presence of the impurities with different potential range. The dependence of $sigma(E_F)$ displays four different types of behavior, classified to different regimes of length scales decided by the impurity potential range and its density. Particularly, low density of long range impurities results in an extremely low conductance compared to the ballistic value, a linear dependence of $sigma(E_F)$ and a wide dip near the Dirac point, due to the special properties of long range potential and edge states. These behaviors agree well with the results from a recent experiment by Miao emph{et al.} (to appear in Science).
58 - R. Ma , S. W. Liu , M. X. Deng 2017
We numerically study the electrical and thermoelectric transport properties in phosphorene in the presence of both a magnetic field and disorder. The quantized Hall conductivity is similar to that of a conventional two-dimensional electron gas, but the positions of all the Hall plateaus shift to the left due to the spectral asymmetry, in agreement with the experimental observations. The thermoelectric conductivity and Nernst signal exhibit remarkable anisotropy, and the thermopower is nearly isotropic. When a bias voltage is applied between top and bottom layers of phosphorene, both thermopower and Nernst signal are enhanced and their peak values become large.
We investigate the electronic band structure of an undoped graphene armchair nanoribbon. We demonstrate that such nanoribbon always has a gap in its electronic spectrum. Indeed, even in the situations where simple single-electron calculations predict a metallic dispersion, the system is unstable with respect to the deformation of the carbon-carbon bonds dangling at the edges of the armchair nanoribbon. The edge bonds deformation couples electron and hole states with equal momentum. This coupling opens a gap at the Fermi level. In a realistic sample, however, it is unlikely that this instability could be observed in its pure form. Namely, since chemical properties of the dangling carbon atoms are different from chemical properties of the atoms inside the sample (for example, the atoms at the edge have only two neighbours, besides additional non-carbon atoms might be attached to passivate unpaired covalent carbon bonds), it is very probable that the bonds at the edge are deformed due to chemical interactions. This chemically-induced modification of the nanoribbons edges can be viewed as an effective field biasing our predicted instability in a particular direction. Yet by disordering this field (e.g., through random substitution of the radicals attached to the edges) we may tune the system back to the critical regime and vary the electronic properties of the system. For example, we show that electrical transport through a nanoribbon is strongly affected by such disorder.
The magneto-transport properties of phosphorene are investigated by employing the generalized tight-binding model to calculate the energy bands. For bilayer phosphorene, a composite magnetic and electric field is shown to induce a feature-rich Landau level (LL) spectrum which includes two subgroups of low-lying LLs. The two subgroups possess distinct features in level spacings, quantum numbers, as well as field dependencies. These together lead to anomalous quantum Hall (QH) conductivities which include a well-shape, staircase and composite quantum structures with steps having varying heights and widths. The Fermi energy-magnetic field-Hall conductivity ($E_{F}-B_{z}-sigma_{xy}$) and Fermi energy-electric field-Hall conductivity ($E_{F}-E_{z}-sigma_{xy}$) phase diagrams clearly exhibit oscillatory behaviors and cross-over from integer to half-integer QH effect. The predicted results should be verifiable by magneto-transport measurements in a dual-gated system.
Results of quantum mechanical simulations of the influence of edge disorder on transport in graphene nanoribbon metal oxide semiconductor field-effect transistors (MOSFETs) are reported. The addition of edge disorder significantly reduces ON-state currents and increases OFF-state currents, and introduces wide variability across devices. These effects decrease as ribbon widths increase and as edges become smoother. However the bandgap decreases with increasing width, thereby increasing the band-to-band tunneling mediated subthreshold leakage current even with perfect nanoribbons. These results suggest that without atomically precise edge control during fabrication, MOSFET performance gains through use of graphene will be difficult to achieve.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا