The previous thermodynamic treatment for models with density and/or temperature dependent quark masses is shown to be inconsistent with the requirement of fundamental thermodynamics. We therefore study a fully self-consistent one according to the fundamental differential equation of thermodynamics. After obtaining a new quark mass scaling with the inclusion of both confinement and leading-order perturbative interactions, we investigate properties of strange quark matter in the fully consistent thermodynamic treatment. It is found that the equation of state become stiffer, and accordingly, the maximum mass of strange stars is as large as about 2 times the solar mass, if strange quark matter is absolutely or metastable.