Do you want to publish a course? Click here

3-D particle-in-cell simulations for quasi-phase matched direct laser electron acceleration in density-modulated plasma waveguides

124   0   0.0 ( 0 )
 Added by Ming-wei Lin
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quasi-phase matched direct laser acceleration (DLA) of electrons can be realized with guided, radially polarized laser pulses in density-modulated plasma waveguides. A 3-D particle-in-cell model has been developed to describe the interactions among the laser field, injected electrons, and the background plasma in the DLA process. Simulations have been conducted to study the scheme in which seed electron bunches with moderate energies are injected into a plasma waveguide and the DLA is performed by use of relatively low-power (0.5-2 TW) laser pulses. Selected bunch injection delays with respect to the laser pulse, bunch lengths, and bunch transverse sizes have been studied in a series of simulations of DLA in a plasma waveguide. The results show that the injection delay is important for controlling the final transverse properties of short electron bunches, but it also affects the final energy gain. With a long injected bunch length, the enhanced ion-focusing force helps to collimate the electrons and a relatively small final emittance can be obtained. DLA efficiency is reduced when a bunch with a greater transverse size is injected; in addition, micro-bunching is clearly observed due to the focusing and defocusing of electrons by the radially directed Lorentz force. DLA should be performed with a moderate laser power to maintain favorable bunch transverse properties, while the waveguide length can be extended to obtain a higher maximum energy gain, with the commensurate increase of laser pulse duration and energy.



rate research

Read More

64 - P. M. King , K. Miller , N. Lemos 2020
The two-temperature relativistic electron spectrum from a low-density ($3times10^{17}$~cm$^{-3}$) self-modulated laser wakefield accelerator (SM-LWFA) is observed to transition between temperatures of $19pm0.65$ and $46pm2.45$ MeV at an electron energy of about 100 MeV. When the electrons are dispersed orthogonally to the laser polarization, their spectrum above 60 MeV shows a forking structure characteristic of direct laser acceleration (DLA). Both the two-temperature distribution and the forking structure are reproduced in a quasi-3D textsc{Osiris} simulation of the interaction of the 1-ps, moderate-amplitude ($a_{0}=2.7$) laser pulse with the low-density plasma. Particle tracking shows that while the SM-LWFA mechanism dominates below 40 MeV, the highest-energy ($>60$ MeV) electrons gain most of their energy through DLA. By separating the simulated electric fields into modes, the DLA-dominated electrons are shown to lose significant energy to the longitudinal laser field from the tight focusing geometry, resulting in a more accurate measure of net DLA energy gain than previously possible.
We demonstrate that laser reflection acts as a catalyst for superponderomotive electron production in the preplasma formed by relativistic multipicosecond lasers incident on solid density targets. In 1D particle-in-cell simulations, high energy electron production proceeds via two stages of direct laser acceleration, an initial stochastic backward stage, and a final non-stochastic forward stage. The initial stochastic stage, driven by the reflected laser pulse, provides the pre-acceleration needed to enable the final stage to be non-stochastic. Energy gain in the electrostatic potential, which has been frequently considered to enhance stochastic heating, is only of secondary importance. The mechanism underlying the production of high energy electrons by laser pulses incident on solid density targets is of direct relevance to applications involving multipicosecond laser-plasma interactions.
We design and develop a new Particle-in-Cell (PIC) method for plasma simulations using Deep-Learning (DL) to calculate the electric field from the electron phase space. We train a Multilayer Perceptron (MLP) and a Convolutional Neural Network (CNN) to solve the two-stream instability test. We verify that the DL-based MLP PIC method produces the correct results using the two-stream instability: the DL-based PIC provides the expected growth rate of the two-stream instability. The DL-based PIC does not conserve the total energy and momentum. However, the DL-based PIC method is stable against the cold-beam instability, affecting traditional PIC methods. This work shows that integrating DL technologies into traditional computational methods is a viable approach for developing next-generation PIC algorithms.
The propagation of intense laser pulses and the generation of high energy electrons from the underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power and a critical power of relativistic self-focusing is the optimal value, it propagates stably and electrons have maximum energies.
Supercontinuum generation in integrated photonic waveguides is a versatile source of broadband light, and the generated spectrum is largely determined by the phase-matching conditions. Here we show that quasi-phase-matching via periodic modulations of the waveguide structure provides a useful mechanism to control the evolution of ultrafast pulses and the supercontinuum spectrum. We experimentally demonstrate quasi-phase-matched supercontinuum to the TE20 and TE00 waveguide modes, which enhances the intensity of the SCG in specific spectral regions by as much as 20 dB. We utilize higher-order quasi-phase-matching (up to the 16th order) to enhance the intensity in numerous locations across the spectrum. Quasi-phase-matching adds a unique dimension to the design-space for SCG waveguides, allowing the spectrum to be engineered for specific applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا