Do you want to publish a course? Click here

$N$-boson spectrum from a Discrete Scale Invariance

264   0   0.0 ( 0 )
 Added by Mario Gattobigio
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the analysis of the $N$-boson spectrum computed using a soft two-body potential the strength of which has been varied in order to cover an extended range of positive and negative values of the two-body scattering length $a$ close to the unitary limit. The spectrum shows a tree structure of two states, one shallow and one deep, attached to the ground-state of the system with one less particle. It is governed by an unique universal function, $Delta(xi)$, already known in the case of three bosons. In the three-particle system the angle $xi$, determined by the ratio of the two- and three-body binding energies $E_3/E_2=tan^2xi$, characterizes the Discrete Scale Invariance of the system. Extending the definition of the angle to the $N$-body system as $E_N/E_2=tan^2xi$, we study the $N$-boson spectrum in terms of this variable. The analysis of the results, obtained for up to $N=16$ bosons, allows us to extract a general formula for the energy levels of the system close to the unitary limit. Interestingly, a linear dependence of the universal function as a function of $N$ is observed at fixed values of $a$. We show that the finite-range nature of the calculations results in the range corrections that generate a shift of the linear relation between the scattering length $a$ and a particular form of the universal function. We also comment on the limits of applicability of the universal relations.



rate research

Read More

We use the functional renormalisation group to study the spectrum of three- and four-body states in bosonic systems around the unitary limit. Our effective action includes all energy-independent contact interactions in the four-atom sector and we introduce a running trimer field to eliminate couplings that involve the atom-atom-dimer channel. The results show qualitatively similar behaviour to those from exact approaches. The truncated action we use leads to overbinding of the two four-body states seen in those treatments. It also generates a third state, although only for a very narrow range of two-body scattering lengths.
We apply a functional renormalisation group to systems of four bosonic atoms close to the unitary limit. We work with a local effective action that includes a dynamical trimer field and we use this field to eliminate structures that do not correspond to the Faddeev-Yakubovsky equations. In the physical limit, we find three four-body bound states below the shallowest three-body state. The values of the scattering lengths at which two of these states become bound are in good agreement with exact solutions of the four-body equations and experimental observations. The third state is extremely shallow. During the evolution we find an infinite number of four-body states based on each three-body state which follow a double-exponential pattern in the running scale. None of the four-body states shows any evidence of dependence on a four-body parameter.
We show that a one-dimensional chain of trapped ions can be engineered to produce a quantum mechanical system with discrete scale invariance and fractal-like time dependence. By discrete scale invariance we mean a system that replicates itself under a rescaling of distance for some scale factor, and a time fractal is a signal that is invariant under the rescaling of time. These features are reminiscent of the Efimov effect, which has been predicted and observed in bound states of three-body systems. We demonstrate that discrete scale invariance in the trapped ion system can be controlled with two independently tunable parameters. We also discuss the extension to n-body states where the discrete scaling symmetry has an exotic heterogeneous structure. The results we present can be realized using currently available technologies developed for trapped ion quantum systems.
A recent rejuvenation of experimental and theoretical interest in the physics of few- body systems has provided deep, fundamental insights into a broad range of problems. Few-body physics is a cross-cutting discipline not restricted to conventional subject ar- eas such as nuclear physics or atomic or molecular physics. To a large degree, the recent explosion of interest in this subject has been sparked by dramatic enhancements of experimental capabilities in ultracold atomic systems over the past decade, which now permit atoms and molecules to be explored deep in the quantum mechanical limit with controllable two-body interactions. This control, typically enabled by magnetic or electromagnetically-dressed Fano-Feshbach resonances, allows in particular access to the range of universal few-body physics, where two-body scattering lengths far exceed all other length scales in the problem. The Efimov effect, where 3 particles experienc- ing short-range interactions can counterintuitively exhibit an infinite number of bound or quasi-bound energy levels, is the most famous example of universality. Tremendous progress in the field of universal Efimov physics has taken off, driven particularly by a combination of experimental and theoretical studies in the past decade, and prior to the first observation in 2006, by an extensive set of theoretical studies dating back to 1970. Because experimental observations of Efimov physics have usually relied on resonances or interference phenomena in three-body recombination, this connects naturally with the processes of molecule formation in a low temperature gas of atoms or nucleons, and more generally with N-body recombination processes. Some other topics not closely related to the Efimov effect are also reviewed in this article, including ...
The universal behavior of a three-boson system close to the unitary limit is encoded in a simple dependence of many observables in terms of few parameters. For example the product of the three-body parameter $kappa_*$ and the two-body scattering length $a$, $kappa_* a$ depends on the angle $xi$ defined by $E_3/E_2=tan^2xi$. A similar dependence is observed in the ratio $a_{AD}/a$ with $a_{AD}$ the boson-dimer scattering length. We use a two-parameter potential to determine this simple behavior and, as an application, to compute $a_{AD}$ for the case of three $^4$He atoms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا