We have performed systematic angle-resolved photoemission spectroscopy (ARPES) of iron-chalcogenide superconductor FeTe1-xSex to elucidate the electronic states relevant to the superconductivity. While the Fermi-surface shape is nearly independent of x, we found that the ARPES spectral line shape shows prominent x dependence. A broad ARPES spectrum characterized by a small quasiparticle weight at x = 0, indicative of incoherent electronic states, becomes progressively sharper with increasing x, and a well-defined quasiparticle peak appears around x = 0.45 where bulk superconductivity is realized. The present result suggests the evolution from incoherent to coherent electronic states and its close relationship to the emergence of superconductivity.