Do you want to publish a course? Click here

Near-Field Limits on the Role of Faint Galaxies in Cosmic Reionization

143   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Reionizing the Universe with galaxies appears to require significant star formation in low-mass halos at early times, while local dwarf galaxy counts tell us that star formation has been minimal in small halos around us today. Using simple models and the ELVIS simulation suite, we show that reionization scenarios requiring appreciable star formation in halos with $M_{rm vir} approx 10^{8},M_{odot}$ at $z=8$ are in serious tension with galaxy counts in the Local Group. This tension originates from the seemingly inescapable conclusion that 30 - 60 halos with $M_{rm vir} > 10^{8},M_{odot}$ at $z=8$ will survive to be distinct bound satellites of the Milky Way at $z = 0$. Reionization models requiring star formation in such halos will produce dozens of bound galaxies in the Milky Ways virial volume today (and 100 - 200 throughout the Local Group), each with $gtrsim 10^{5},M_{odot}$ of old stars ($gtrsim 13$ Gyr). This exceeds the stellar mass function of classical Milky Way satellites today, even without allowing for the (significant) post-reionization star formation observed in these galaxies. One possible implication of these findings is that star formation became sharply inefficient in halos smaller than $sim 10^9 ,M_{odot}$ at early times, implying that the high-$z$ luminosity function must break at magnitudes brighter than is often assumed (at ${rm M_{UV}} approx -14$). Our results suggest that JWST (and possibly even HST with the Frontier Fields) may realistically detect the faintest galaxies that drive reionization. It remains to be seen how these results can be reconciled with the most sophisticated simulations of early galaxy formation at present, which predict substantial star formation in $M_{rm vir} sim 10^8 , M_{odot}$ halos during the epoch of reionization.



rate research

Read More

We examine the reionization history of present-day galaxies by explicitly tracing the building blocks of halos from the Cosmic Reionization On Computers project. We track dark matter particles that belong to $z=0$ halos to trace the neutral fractions at corresponding positions during rapid global reionization. The resulting particle reionization histories allow us to explore different definitions of a halos reionization redshift and to account for the neutral content of the interstellar medium. Consistent with previous work, we find a systematic trend of reionization redshift with mass - present day halos with higher masses have earlier reionization times. Finally, we quantify the spread of reionization times within each halo, which also has a mass dependence.
Recently, the Hydrogen Epoch of Reionization Array (HERA) collaboration has produced the experiments first upper limits on the power spectrum of 21-cm fluctuations at z~8 and 10. Here, we use several independent theoretical models to infer constraints on the intergalactic medium (IGM) and galaxies during the epoch of reionization (EoR) from these limits. We find that the IGM must have been heated above the adiabatic cooling threshold by z~8, independent of uncertainties about the IGM ionization state and the nature of the radio background. Combining HERA limits with galaxy and EoR observations constrains the spin temperature of the z~8 neutral IGM to 27 K < T_S < 630 K (2.3 K < T_S < 640 K) at 68% (95%) confidence. They therefore also place a lower bound on X-ray heating, a previously unconstrained aspects of early galaxies. For example, if the CMB dominates the z~8 radio background, the new HERA limits imply that the first galaxies produced X-rays more efficiently than local ones (with soft band X-ray luminosities per star formation rate constrained to L_X/SFR = { 10^40.2, 10^41.9 } erg/s/(M_sun/yr) at 68% confidence), consistent with expectations of X-ray binaries in low-metallicity environments. The z~10 limits require even earlier heating if dark-matter interactions (e.g., through millicharges) cool down the hydrogen gas. Using a model in which an extra radio background is produced by galaxies, we rule out (at 95% confidence) the combination of high radio and low X-ray luminosities of L_{r, u}/SFR > 3.9 x 10^24 W/Hz/(M_sun/yr) and L_X/SFR<10^40 erg/s/(M_sun/yr). The new HERA upper limits neither support nor disfavor a cosmological interpretation of the recent EDGES detection. The analysis framework described here provides a foundation for the interpretation of future HERA results.
317 - Yi Mao 2019
Cosmic reionization was driven by the imbalance between early sources and sinks of ionizing radiation, both of which were dominated by small-scale structure and are thus usually treated in cosmological reionization simulations by subgrid modelling. The recombination rate of intergalactic hydrogen is customarily boosted by a subgrid clumping factor, ${left<n^2right>/left<nright>^2}$, which corrects for unresolved fluctuations in gas density ${n}$ on scales below the grid-spacing of coarse-grained simulations. We investigate in detail the impact of this inhomogeneous subgrid clumping on reionization and its observables, as follows: (1) Previous attempts generally underestimated the clumping factor because of insufficient mass resolution. We perform a high-resolution $N$-body simulation that resolves haloes down to the pre-reionization Jeans mass to derive the time-dependent, spatially-varying local clumping factor and a fitting formula for its correlation with local overdensity. (2) We then perform a large-scale $N$-body and radiative transfer simulation that accounts for this inhomogeneous subgrid clumping by applying this clumping factor-overdensity correlation. Boosting recombination significantly slows the expansion of ionized regions, which delays completion of reionization and suppresses 21 cm power spectra on large scales in the later stages of reionization. (3) We also consider a simplified prescription in which the globally-averaged, time-evolving clumping factor from the same high-resolution $N$-body simulation is applied uniformly to all cells in the reionization simulation, instead. Observables computed with this model agree fairly well with those from the inhomogeneous clumping model, e.g. predicting 21 cm power spectra to within 20% error, suggesting it may be a useful approximation.
97 - V. Bosch-Ramon 2018
The reionization of the Universe ends the dark ages that started after the recombination era. In the case of H, reionization finishes around $zsim 6$. Faint star-forming galaxies are the best candidate sources of the H-ionizing radiation, although active galactic nuclei may have also contributed. We have explored whether the termination regions of the jets from active galactic nuclei may have contributed significantly to the ionization of H in the late reionization epoch, around $zsim 6-7$. We assumed that, as it has been proposed, active galactic nuclei at $zsim 6$ may have presented a high jet fraction, accretion rate, and duty cycle, and that non-thermal electrons contribute significantly to the pressure of jet termination regions. Empirical black-hole mass functions were adopted to characterize the population of active galactic nuclei. From all this, estimates were derived for the isotropic H-ionizing radiation produced in the jet termination regions, at $zsim 6$, through inverse Compton scattering off CMB photons. We find that the termination regions of the jets of active galactic nuclei may have radiated most of their energy in the form of H-ionizing radiation at $zsim 6$. For typical black-hole mass functions at that redshift, under the considered conditions (long-lasting, common, and very active galactic nuclei with jets), the contribution of these jets to maintain (and possibly enhance) the ionization of H may have been non-negligible. We conclude that the termination regions of jets from active galactic nuclei could have had a significant role in the reionization of the Universe at $zgtrsim 6$.
Increasing evidence suggests that cosmological sheets, filaments, and voids may be substantially magnetized today. The origin of magnetic fields in the intergalactic medium (IGM) is, however, currently uncertain. It seems well known that non-standard extensions to the physics of the standard model can provide mechanisms susceptible of magnetizing the universe at large. Perhaps less well known is the fact that standard, classical physics of matter--radiation interactions actually possesses the same potential. We discuss a magnetogenesis mechanism based on the exchange of momentum between hard photons and electrons in an inhomogeneous IGM. Operating in the neighborhood of ionizing sources during the epoch of reionization, this mechanism is capable of generating magnetic seeds of relevant strengths over scales comparable to the distance between ionizing sources. In addition, summing up the contributions of all ionizing sources and taking into account the distribution of gas inhomogeneities, we show that this mechanism leaves the IGM, at the end of reionization, with a level of magnetization that might account, when amplification mechanisms take over, for the magnetic fields strengths in the current cosmic web.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا