Do you want to publish a course? Click here

Deep sea tests of a prototype of the KM3NeT digital optical module

233   0   0.0 ( 0 )
 Added by Paul Kooijman
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same $^{40}$K decay and the localization bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions.

rate research

Read More

KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea. It will house a neutrino telescope comprising hundreds of networked moorings - detection units or strings equipped with optical instrumentation to detect the Cherenkov radiation generated by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings typically used for oceanography, several key features of the KM3NeT string are different: the instrumentation is contained in transparent and thus unprotected glass spheres; two thin Dyneema ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper wires for data and power transmission, respectively, runs along the full length of the mooring. Also, compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings, a custom-made, fast deployment method was designed. Despite the length of several hundreds of metres, the slim design of the string allows it to be compacted into a small, re-usable spherical launching vehicle instead of deploying the mooring weight down from a surface vessel. After being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle rolling along the two ropes.The design of the vehicle, the loading with a string, and its underwater self-unrolling are detailed in this paper.
A prototype detection unit of the KM3NeT deep-sea neutrino telescope has been installed at 3500m depth 80km offshore the Italian coast. KM3NeT in its final configuration will contain several hundreds of detection units. Each detection unit is a mechanical structure anchored to the sea floor, held vertical by a submerged buoy and supporting optical modules for the detection of Cherenkov light emitted by charged secondary particles emerging from neutrino interactions. This prototype string implements three optical modules with 31 photomultiplier tubes each. These optical modules were developed by the KM3NeT Collaboration to enhance the detection capability of neutrino interactions. The prototype detection unit was operated since its deployment in May 2014 until its decommissioning in July 2015. Reconstruction of the particle trajectories from the data requires a nanosecond accuracy in the time calibration. A procedure for relative time calibration of the photomultiplier tubes contained in each optical module is described. This procedure is based on the measured coincidences produced in the sea by the 40K background light and can easily be expanded to a detector with several thousands of optical modules. The time offsets between the different optical modules are obtained using LED nanobeacons mounted inside them. A set of data corresponding to 600 hours of livetime was analysed. The results show good agreement with Monte Carlo simulations of the expected optical background and the signal from atmospheric muons. An almost background-free sample of muons was selected by filtering the time correlated signals on all the three optical modules. The zenith angle of the selected muons was reconstructed with a precision of about 3{deg}.
75 - Steven Tingay 2020
An imaging technique with sensitivity to short duration optical transients is described. The technique is based on the use of wide-field cameras operating in a drift scanning mode, whereby persistent objects produce trails on the sensor and short duration transients occupy localised groups of pixels. A benefit of the technique is that sensitivity to short duration signals is not accompanied by massive data rates, because the exposure time >> transient duration. The technique is demonstrated using a pre-prototype system composed of readily available and inexpensive commercial components, coupled with common coding environments, commercially available software, and free web-based services. The performance of the technique and the pre-prototype system is explored, including aspects of photometric and astrometric calibration, detection sensitivity, characterisation of candidate transients, and the differentiation of astronomical signals from non-astronomical signals (primarily glints from satellites in Earth orbit and cosmic ray hits on sensor pixels). Test observations were made using the pre-prototype system, achieving sensitivity to transients with 21 ms duration, resulting in the detection of five candidate transients. An investigation of these candidates concludes they are most likely due to cosmic ray hits on the sensor and/or satellites. The sensitivity obtained with the pre-prototype system is such that, under some models for the optical emission from FRBs, the detection of a typical FRB, such as FRB181228, to a distance of approximately 100 Mpc is plausible. Several options for improving the system/technique in the future are described.
73 - G. Angloher , P. Bauer , A. Bento 2017
Scintillating, cryogenic bolometers are widely used in the field of rare event searches. Their main advantages are an excellent energy resolution and particle identification on an event-by-event basis. The sensitivity of experiments applying this detector technique can be limited by the performance of the light channel and the presence of external backgrounds in the region of interest. In the framework of the CRESST-II experiment, we developed and successfully tested a novel detector design addressing both challenges. Using a large scale ($approx$unit[60]{cm$^2$}), beaker-shaped silicon light absorber, the signal height recorded in the light channel is improved by a factor 2.5 compared to conventional CRESTT-II detector modules. In combination with a large carrier crystal, a true $4pi$ veto system is established which allows to tag external background sources.
The General Antiparticle Spectrometer (GAPS) experiment is a novel approach for the detection of cosmic ray antiparticles. A prototype GAPS experiment (pGAPS) was successfully flown on a high-altitude balloon in June of 2012. The goals of the pGAPS experiment were: to test the operation of lithium drifted silicon (Si(Li)) detectors at balloon altitudes, to validate the thermal model and cooling concept needed for engineering of a full-size GAPS instrument, and to characterize cosmic ray and X-ray backgrounds. The instrument was launched from the Japan Aerospace Exploration Agencys (JAXA) Taiki Aerospace Research Field in Hokkaido, Japan. The flight lasted a total of 6 hours, with over 3 hours at float altitude (~33 km). Over one million cosmic ray triggers were recorded and all flight goals were met or exceeded.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا