Do you want to publish a course? Click here

Dual nature of the ferroelectric and metallic state in LiOsO$_3$

316   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using density functional theory we investigate the lattice instability and electronic structure of recently discovered ferroelectric metal LiOsO$_3$. We show that the ferroelectric-like lattice instability is related to the Li-O distortion modes while the Os-O displacements change the d-p hybridization as in common ferroelectric insulators. Within the manifold of the d-orbitals, a dual behavior emerges. The ferroelectric transition is indeed mainly associated to the nominally empty e$_g$ orbitals which are hybridized with the oxygen p orbitals, while the t$_{2g}$ orbitals are responsible of the metallic response. Interestingly, these orbitals are nominally half-filled by three electrons, a configuration which suffers from strong correlation effects even for moderate values of the screened Coulomb interaction.



rate research

Read More

LiOsO$_3$ has been recently identified as the first unambiguous ferroelectric metal, experimentally realizing a prediction from 1965 by Anderson and Blount. In this work, we investigate the metallic state in LiOsO$_3$ by means of infrared spectroscopy supplemented by Density Functional Theory and Dynamical Mean Field Theory calculations. Our measurements and theoretical calculations clearly show that LiOsO$_3$ is a very bad metal with a small quasiparticle weight, close to a Mott-Hubbard localization transition. The agreement between experiments and theory allows us to ascribe all the relevant features in the optical conductivity to strong electron-electron correlations within the $t_{2g}$ manifold of the osmium atoms.
Crystalline symmetries can generate exotic band-crossing features, which can lead to unconventional fermionic excitations with interesting physical properties. We show how a cubic Dirac point---a four-fold-degenerate band-crossing point with cubic dispersion in a plane and a linear dispersion in the third direction---can be stabilized through the presence of a nonsymmorphic glide mirror symmetry in the space group of the crystal. Notably, the cubic Dirac point in our case appears on a threefold axis, even though it has been believed previously that such a point can only appear on a sixfold axis. We show that a cubic Dirac point involving a threefold axis can be realized close to the Fermi level in the non-ferroelectric phase of LiOsO$_3$. Upon lowering temperature, LiOsO$_3$ has been shown experimentally to undergo a structural phase transition from the non-ferroelectric phase to the ferroelectric phase with spontaneously broken inversion symmetry. Remarkably, we find that the broken symmetry transforms the cubic Dirac point into three mutually-crossed nodal rings. There also exist several linear Dirac points in the low-energy band structure of LiOsO$_3$, each of which is transformed into a single nodal ring across the phase transition.
LiOsO$_3$ undergoes a continuous transition from a centrosymmetric $Rbar{3}c$ structure to a polar $R3c$ structure at $T_s=140$~K. By combining transport measurements and first-principles calculations, we find that $T_s$ is enhanced by applied pressure, and it reaches a value of $sim$250~K at $sim$6.5~GPa. The enhancement is due to the fact that the polar $R3c$ structure of LiOsO$_3$ has a smaller volume than the centrosymmetric $Rbar{3}c$ structure. Pressure generically favors the structure with the smallest volume, and therefore further stabilizes the polar $R3c$ structure over the $Rbar{3}c$ structure, leading to the increase in $T_s$.
69 - Y. Zhang , J. J. Gong , C. F. Li 2018
LiOsO$_3$ is the first experimentally confirmed polar metal with ferroelectric-like distortion. One puzzling experimental fact is its paramagnetic state down to very low temperature with negligible magnetic moment, which is anomalous considering its $5d^3$ electron configuration since other osmium oxides (e.g. NaOsO$_3$) with $5d^3$ Os ions are magnetic. Here the magnetic and electronic properties of LiOsO$_3$ are re-investigated carefully using the first-principles density functional theory. Our calculations reveal that the magnetic state of LiOsO$_3$ can be completely suppressed by the spin-orbit coupling. The subtle balance between significant spin-orbit coupling and weak Hubbard $U$ of $5d$ electrons can explain both the nonmagnetic LiOsO$_3$ and magnetic NaOsO$_3$. Our work provides a reasonable understanding of the long-standing puzzle of magnetism in some osmium oxides.
74 - Y. Zhang , J. J. Gong , C. F. Li 2019
LiOsO3 is the first experimentally confirmed polar metal. Previous works suggested that the ground state of LiOsO$_3$ is just close to the critical point of metal-insulator transition. In this work the electronic state of LiOsO$_3$ is tuned by epitaxial biaxial strain, which undergoes the Slater-type metal-insulator transition under tensile strain, i.e., the G-type antiferromagnetism emerges. The underlying mechanism of bandwidth tuning can be extended to its sister compound NaOsO$_3$, which shows an opposite transition from a antiferromagnetic insulator to a nonmagnetic metal under hydrostatic pressure. Our work suggests a feasible route for the manipulation of magnetism and conductivity of polar metal LiOsO$_3$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا