Do you want to publish a course? Click here

Positive Ricci curvature on highly connected manifolds

307   0   0.0 ( 0 )
 Added by Diarmuid Crowley
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

For $k ge 2,$ let $M^{4k-1}$ be a $(2k{-}2)$-connected closed manifold. If $k equiv 1$ mod $4$ assume further that $M$ is $(2k{-}1)$-parallelisable. Then there is a homotopy sphere $Sigma^{4k-1}$ such that $M sharp Sigma$ admits a Ricci positive metric. This follows from a new description of these manifolds as the boundaries of explicit plumbings.



rate research

Read More

91 - Lei Ni , Qingsong Wang , 2018
In this paper we study the class of compact Kahler manifolds with positive orthogonal Ricci curvature: $Ric^perp>0$. First we illustrate examples of Kahler manifolds with $Ric^perp>0$ on Kahler C-spaces, and construct ones on certain projectivized vector bundles. These examples show the abundance of Kahler manifolds which admit metrics of $Ric^perp>0$. Secondly we prove some (algebraic) geometric consequences of the condition $Ric^perp>0$ to illustrate that the condition is also quite restrictive. Finally this last point is made evident with a classification result in dimension three and a partial classification in dimension four.
We prove that a closed $n$-manifold $M$ with positive scalar curvature and abelian fundamental group admits a finite covering $M$ which is strongly inessential. The latter means that a classifying map $u:Mto K(pi_1(M),1)$ can be deformed to the $(n-2)$-skeleton. This is proven for all $n$-manifolds with the exception of 4-manifolds with spin universal coverings.
In this paper we study the Ricci flow on compact four-manifolds with positive isotropic curvature and with no essential incompressible space form. Our purpose is two-fold. One is to give a complete proof of Hamiltons classification theorem on four-manifolds with positive isotropic curvature and with no essential incompressible space form; the other is to extend some recent results of Perelman on the three-dimensional Ricci flow to four-manifolds. During the the proof we have actually provided, up to slight modifications, all necessary details for the part from Section 1 to Section 5 of Perelmans second paper on the Ricci flow.
In the early 1980s, S. T. Yau conjectured that any compact Riemannian three-manifold admits an infinite number of closed immersed minimal surfaces. We use min-max theory for the area functional to prove this conjecture in the positive Ricci curvature setting. More precisely, we show that every compact Riemannian manifold with positive Ricci curvature and dimension at most seven contains infinitely many smooth, closed, embedded minimal hypersurfaces. In the last section we mention some open problems related with the geometry of these minimal hypersurfaces.
116 - Huihong Jiang , Yi-Hu Yang 2019
In a previous paper, we constructed complete manifolds of positive Ricci curvature with quadratically asymptotically nonnegative curvature and infinite topological type but dimension $ge 6$. The purpose of the present paper is to use a different way to exhibit a family of complete $I$-dimensinal ($Ige5$) Riemannian manifolds of positive Ricci curvature, quadratically asymptotically nonnegative sectional curvature, and certain infinite Betti number $b_j$ ($2le jle I-2$).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا