Do you want to publish a course? Click here

To the center of cold spot with Planck

219   0   0.0 ( 0 )
 Added by V. G. Gurzadyan
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The structure of the cold spot, of a non-Gaussian anomaly in the cosmic microwave background (CMB) sky first detected by Vielva et al. is studied using the data by Planck satellite. The obtained map of the degree of stochasticity (K-map) of CMB for the cold spot, reveals, most clearly in 100 GHz band, a shell-type structure with a center coinciding with the minima of the temperature distribution. The shell structure is non-Gaussian at a 4sigma confidence level. Such behavior of the K-map supports the void nature of the cold spot. The applied method can be used for tracing voids that have no signatures in redshift surveys.



rate research

Read More

245 - P. Vielva 2010
The report of a significant deviation of the CMB temperature anisotropies distribution from Gaussianity (soon after the public release of the WMAP data in 2003) has become one of the most solid WMAP anomalies. This detection grounds on an excess of the kurtosis of the Spherical Mexican Hat Wavelet coefficients at scales of around 10 degrees. At these scales, a prominent feature --located in the southern Galactic hemisphere-- was highlighted from the rest of the SMHW coefficients: the Cold Spot. This article presents a comprehensive overview related to the study of the Cold Spot, paying attention to the non-Gaussianity detection methods, the morphological characteristics of the Cold Spot, and the possible sources studied in the literature to explain its nature. Special emphasis is made on the Cold Spot compatibility with a cosmic texture, commenting on future tests that would help to give support or discard this hypothesis.
Gauge-flation is a recently proposed model in which inflation is driven solely by a non-Abelian gauge field thanks to a specific higher order derivative operator. The nature of the operator is such that it does not introduce ghosts. We compute the cosmological scalar and tensor perturbations for this model, improving over an existing computation. We then confront these results with the Planck data. The model is characterized by the quantity gamma = (g^2 Q^2)/H^2 (where g is the gauge coupling constant, Q the vector vev, and H the Hubble rate). For gamma < 2, the scalar perturbations show a strong tachyonic instability. In the stable region, the scalar power spectrum n_s is too low at small gamma, while the tensor-to-scalar ratio r is too high at large gamma. No value of gamma leads to acceptable values for n_s and r, and so the model is ruled out by the CMB data. The same behavior with gamma was obtained in Chromo-natural inflation, a model in which inflation is driven by a pseudo-scalar coupled to a non-Abelian gauge field. When the pseudo-scalar can be integrated out, one recovers the model of Gauge-flation plus corrections. It was shown that this identification is very accurate at the background level, but differences emerged in the literature concerning the perturbations of the two models. On the contrary, our results show that the analogy between the two models continues to be accurate also at the perturbative level.
We present new constraints on cosmic variations of Newtons gravitational constant by making use of the latest CMB data from WMAP, BOOMERANG, CBI and ACBAR experiments and independent constraints coming from Big Bang Nucleosynthesis. We found that current CMB data provide constraints at the 10% level, that can be improved to 3% by including BBN data. We show that future data expected from the Planck satellite could constrain G at the 1.5% level while an ultimate, cosmic variance limited, CMB experiment could reach a precision of about 0.4%, competitive with current laboratory measurements.
We use the WISE-2MASS infrared galaxy catalog matched with Pan-STARRS1 (PS1) galaxies to search for a supervoid in the direction of the Cosmic Microwave Background Cold Spot. Our imaging catalog has median redshift $zsimeq 0.14$, and we obtain photometric redshifts from PS1 optical colours to create a tomographic map of the galaxy distribution. The radial profile centred on the Cold Spot shows a large low density region, extending over 10s of degrees. Motivated by previous Cosmic Microwave Background results, we test for underdensities within two angular radii, $5^circ$, and $15^circ$. The counts in photometric redshift bins show significantly low densities at high detection significance, $gtrsim 5 sigma$ and $gtrsim 6 sigma$, respectively, for the two fiducial radii. The line-of-sight position of the deepest region of the void is $zsimeq 0.15-0.25$. Our data, combined with an earlier measurement by Granett et al. 2010, are consistent with a large $R_{rm void}=(220 pm 50) h^{-1}Mpc $ supervoid with $delta_{m} simeq -0.14 pm 0.04$ centered at $z=0.22pm0.03$. Such a supervoid, constituting at least a $simeq 3.3sigma$ fluctuation in a Gaussian distribution of the $Lambda CDM$ model, is a plausible cause for the Cold Spot.
We develop a method to constrain non-isotropic features of Cosmic Microwave Background (CMB) polarization, of a type expected to arise in some models describing quantum gravity effects on light propagation. We describe the expected signatures of this kind of anomalous light propagation on CMB photons, showing that it will produce a non-isotropic birefringence effect, i.e. a rotation of the CMB polarization direction whose observed amount depends in a peculiar way on the observation direction. We also show that the sensitivity levels expected for CMB polarization studies by the emph{Planck} satellite are sufficient for testing these effects if, as assumed in the quantum-gravity literature, their magnitude is set by the minute Planck length.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا