Do you want to publish a course? Click here

The prospect of detecting single-photon force effects in cavity optomechanics

155   0   0.0 ( 0 )
 Added by David Vitali
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cavity optomechanical systems are approaching a strong-coupling regime where the coherent dynamics of nanomechanical resonators can be manipulated and controlled by optical fields at the single photon level. Here we propose an interferometric scheme able to detect optomechanical coherent interaction at the single-photon level which is experimentally feasible with state-of-the-art devices.



rate research

Read More

Single-crystal diamond cavity optomechanical devices are a promising example of a hybrid quantum system: by coupling mechanical resonances to both light and electron spins, they can enable new ways for photons to control solid state qubits. However, realizing cavity optomechanical devices from high quality diamond chips has been an outstanding challenge. Here we demonstrate single-crystal diamond cavity optomechanical devices that can enable photon-phonon-spin coupling. Cavity optomechanical coupling to $2,text{GHz}$ frequency ($f_text{m}$) mechanical resonances is observed. In room temperature ambient conditions, these resonances have a record combination of low dissipation (mechanical quality factor, $Q_text{m} > 9000$) and high frequency, with $Q_text{m}cdot f_text{m} sim 1.9times10^{13}$ sufficient for room temperature single phonon coherence. The system exhibits high optical quality factor ($Q_text{o} > 10^4$) resonances at infrared and visible wavelengths, is nearly sideband resolved, and exhibits optomechanical cooperativity $Csim 3$. The devices potential for optomechanical control of diamond electron spins is demonstrated through radiation pressure excitation of mechanical self-oscillations whose 31 pm amplitude is predicted to provide 0.6 MHz coupling rates to diamond nitrogen vacancy center ground state transitions (6 Hz / phonon), and $sim10^5$ stronger coupling rates to excited state transitions.
81 - J. Li , A. Xuereb , N. Malossi 2015
We study the cavity mode frequencies of a Fabry-Perot cavity containing two vibrating dielectric membranes. We derive the equations for the mode resonances and provide approximate analytical solutions for them as a function of the membrane positions, which act as an excellent approximation when the relative and center-of-mass position of the two membranes are much smaller than the cavity length. With these analytical solutions, one finds that extremely large optomechanical coupling of the membrane relative motion can be achieved in the limit of highly reflective membranes when the two membranes are placed very close to a resonance of the inner cavity formed by them. We also study the cavity finesse of the system and verify that, under the conditions of large coupling, it is not appreciably affected by the presence of the two membranes. The achievable large values of the ratio between the optomechanical coupling and the cavity decay rate, $g/kappa$, make this two-membrane system the simplest promising platform for implementing cavity optomechanics in the strong coupling regime.
Nonclassical optomechanical correlations enable optical control of mechanical motion beyond the limitations of classical driving. Here we investigate the feasibility of using pulsed cavity-optomechanics to create and verify nonclassical phase-sensitive correlations between light and the motion of a levitated nanoparticle in a realistic scenario. We show that optomechanical two-mode squeezing can persist even at the elevated temperatures of state-of-the-art experimental setups. We introduce a detection scheme based on optical homodyning that allows revealing nonclassical correlations without full optomechanical state tomography. We provide an analytical treatment using the rotating wave approximation (RWA) in the resolved-sideband regime and prove its validity with a full numerical solution of the Lyapunov equation beyond the RWA. We build on parameters of current experiments for our analysis and conclude that the observation of nonclassical correlations is possible today.
We show how to generate tripartite entanglement in a cavity magnomechanical system which consists of magnons, cavity microwave photons, and phonons. The magnons are embodied by a collective motion of a large number of spins in a macroscopic ferrimagnet, and are driven directly by an electromagnetic field. The cavity photons and magnons are coupled via magnetic dipole interaction, and the magnons and phonons are coupled via magnetostrictive (radiation pressure-like) interaction. We show optimal parameter regimes for achieving the tripartite entanglement where magnons, cavity photons, and phonons are entangled with each other, and we further prove that the steady state of the system is a genuinely tripartite entangled state. The entanglement is robust against temperature. Our results indicate that cavity magnomechanical systems could provide a promising platform for the study of macroscopic quantum phenomena.
We investigate a general scheme for generating, either dynamically or in the steady state, continuous variable entanglement between two mechanical resonators with different frequencies. We employ an optomechanical system in which a single optical cavity mode driven by a suitably chosen two-tone field is coupled to the two resonators. Significantly large mechanical entanglement can be achieved, which is extremely robust with respect to temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا