No Arabic abstract
A manifestly covariant equation is derived to describe the second order perturbations in topological defects and membranes on arbitrary curved background spacetimes. This, on one hand, generalizes work on macroscopic strings in Minkowski spacetime and introduces a framework for studing in a precise manner membranes behavior near the black hole horizon and on the other hand, introduces a more general framework for examining the stability of topological defects in curved spacetimes.
We describe a new mechanism - radiatively-induced gravitational leptogenesis - for generating the matter-antimatter asymmetry of the Universe. We show how quantum loop effects in C and CP violating theories cause matter and antimatter to propagate differently in the presence of gravity, and prove this is forbidden in flat space by CPT and translation symmetry. This generates a curvature-dependent chemical potential for leptons, allowing a matter-antimatter asymmetry to be generated in thermal equilibrium in the early Universe. The time-dependent dynamics necessary for leptogenesis is provided by the interaction of the virtual self-energy cloud of the leptons with the expanding curved spacetime background, which violates the strong equivalence principle and allows a distinction between matter and antimatter. We show here how this mechanism is realised in a particular BSM theory, the see-saw model, where the quantum loops involve the heavy sterile neutrinos responsible for light neutrino masses. We demonstrate by explicit computation of the relevant two-loop Feynman diagrams how these radiative corrections display the necessary dependence on the sterile neutrino masses to generate an asymmetry, and show how the induced lepton asymmetry may be sufficiently large to play an important role in determining the baryon-to-photon ratio of the Universe.
Gravity induced neutrino-antineutrino oscillations are studied in the context of one and two flavor scenarios. This allows one to investigate the particle-antiparticle correlations in two and four level systems, respectively. Flavor entropy is used to probe the entanglement in the system. The well known witnesses of non-classicality such as Mermin and Svetlichly inequalities are investigated. Since the extent of neutrino-antineutrino oscillation is governed by the strength of the gravitational field, the behavior of non-classicality shows interesting features as one varies the strength of the gravitational field. Specifically, the suppression of the entanglement with the increase of the gravitational field is observed which is witnessed in the form of decrease in the flavor entropy of the system. The features of the Mermin and the Svetlichny inequalities allow one to make statements about the degeneracy of neutrino mass eigenstates.
We write down the most general membrane equations dual to black holes for a general class of gravity theories, up to sub-leading order in $1/D$ in large $D$ limit. We derive a minimal entropy current which satisfies a local form of second law from these membrane equations. We find that consistency with second law requires the membrane equations to satisfy certain constraints. We find additional constraints on the membrane equations from the existence of membrane solutions dual to stationary black holes. Finally we observe a tension between second law and matching with Wald entropy for dual stationary black hole configurations, for the minimal entropy current. We propose a simple modification of the membrane entropy current so that it satisfies second law and also the stationary membrane entropy matches the Wald entropy.
Double Field Theory provides a geometric framework capable of describing string theory backgrounds that cannot be understood purely in terms of Riemannian geometry -- not only globally (`non-geometry), but even locally (`non-Riemannian). In this work, we show that the non-relativistic closed string theory of Gomis and Ooguri [1] arises precisely as such a non-Riemannian string background, and that the Gomis-Ooguri sigma model is equivalent to the Double Field Theory sigma model of [2] on this background. We further show that the target-space formulation of Double Field Theory on this non-Riemannian background correctly reproduces the appropriate sector of the Gomis-Ooguri string spectrum. To do this, we develop a general semi-covariant formalism describing perturbations in Double Field Theory. We derive compact expressions for the linearized equations of motion around a generic on-shell background, and construct the corresponding fluctuation Lagrangian in terms of novel completely covariant second order differential operators. We also present a new non-Riemannian solution featuring Schrodinger conformal symmetry.
There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativisitic symmetries which supports massive matter fields. In particular, one can not impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge field which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [arXiv:1503.02680] we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.