We introduce an object called a decorated Young tableau which can equivalently be viewed as a continuous time trajectory of Young diagrams or as a non-intersecting line ensemble. By a natural extension of the Robinson-Schensted correspondence, we create a random pair of decorated Young tableaux from a Poisson point process in the plane, which we think of as a stochastic process in discrete space and continuous time. By using only elementary techniques and combinatorial properties, we identify this process as a Schur process and show it has the same law as certain non-intersecting Poisson walkers.