No Arabic abstract
Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above $10^{17},$eV and zenith angles smaller than $45^circ$, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances $gtrsim 50,$m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately $140,$g/cm$^2$. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, $X_mathrm{max}$, better than $30,$g/cm$^2$. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.
Ultra-high energy cosmic rays (UHECRs) interacting with the atmosphere generate extensive air showers (EAS) of secondary particles. The depth corresponding to the maximum development of the shower, $Xmax$, is a well-known observable for determining the nature of the primary cosmic ray which initiated the cascade process. In this paper, we present an empirical model to describe the distribution of $Xmax$ for EAS initiated by nuclei, in the energy range from $10^{17}$ eV up to $10^{21}$ eV, and by photons, in the energy range from $10^{17}$ eV up to $10^{19.6}$ eV. Our model adopts the generalized Gumbel distribution motivated by the relationship between the generalized Gumbel statistics and the distribution of the sum of non-identically distributed variables in dissipative stochastic systems. We provide an analytical expression for describing the $Xmax$ distribution for photons and for nuclei, and for their first two statistical moments, namely $langle Xmaxrangle$ and $sigma^{2}(Xmax)$. The impact of the hadronic interaction model is investigated in detail, even in the case of the most up-to-date models accounting for LHC observations. We also briefly discuss the differences with a more classical approach and an application to the experimental data based on information theory.
Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can also be transfered to other experiments in radio and acoustic detection of cosmic rays and neutrinos.
We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.
LOPES, the LOFAR prototype station, was an antenna array for cosmic-ray air showers operating from 2003 - 2013 within the KASCADE-Grande experiment. Meanwhile, the analysis is finished and the data of air-shower events measured by LOPES are available with open access in the KASCADE Cosmic Ray Data Center (KCDC). This article intends to provide a summary of the achievements, results, and lessons learned from LOPES. By digital, interferometric beamforming the detection of air showers became possible in the radio-loud environment of the Karlsruhe Institute of Technology (KIT). As a prototype experiment, LOPES tested several antenna types, array configurations and calibration techniques, and pioneered analysis methods for the reconstruction of the most important shower parameters, i.e., the arrival direction, the energy, and mass-dependent observables such as the position of the shower maximum. In addition to a review and update of previously published results, we also present new results based on end-to-end simulations including all known instrumental properties. For this, we applied the detector response to radio signals simulated with the CoREAS extension of CORSIKA, and analyzed them in the same way as measured data. Thus, we were able to study the detector performance more accurately than before, including some previously inaccessible features such as the impact of noise on the interferometric cross-correlation beam. These results led to several improvements, which are documented in this paper and can provide useful input for the design of future cosmic-ray experiments based on the digital radio-detection technique.
We investigated the radio wavefront of cosmic-ray air showers with LOPES measurements and CoREAS simulations: the wavefront is of approximately hyperbolic shape and its steepness is sensitive to the shower maximum. For this study we used 316 events with an energy above 0.1 EeV and zenith angles below $45^circ$ measured by the LOPES experiment. LOPES was a digital radio interferometer consisting of up to 30 antennas on an area of approximately 200 m x 200 m at an altitude of 110 m above sea level. Triggered by KASCADE-Grande, LOPES measured the radio emission between 43 and 74 MHz, and our analysis might strictly hold only for such conditions. Moreover, we used CoREAS simulations made for each event, which show much clearer results than the measurements suffering from high background. A detailed description of our result is available in our recent paper published in JCAP09(2014)025. The present proceeding contains a summary and focuses on some additional aspects, e.g., the asymmetry of the wavefront: According to the CoREAS simulations the wavefront is slightly asymmetric, but on a much weaker level than the lateral distribution of the radio amplitude.