Do you want to publish a course? Click here

NNLL resummation for squark and gluino production at the LHC

190   0   0.0 ( 0 )
 Added by Vincent Theeuwes
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We perform the resummation of soft-gluon emissions for squark and gluino production at next- to-next-to-leading-logarithmic (NNLL) accuracy. We include also the one-loop hard matching coefficients as well as Coulomb corrections to second order, using Mellin-moment methods. We study the characteristics of this resummation in detail for a centre-of-mass (CM) energy of 8 TeV at the LHC, and for squark and gluino masses up to 2.5 TeV. We find significant enhancing effects for all four processes of squark- and gluino-pair production. Scale dependence is generally reduced compared to NLL resummation, except for gluino-pair production where we find a moderate enhancement.



rate research

Read More

We present predictions for the total cross sections for pair production of squarks and gluinos at the LHC including a combined NNLL resummation of soft and Coulomb gluon effects. We derive all terms in the NNLO cross section that are enhanced near the production threshold, which include contributions from spin-dependent potentials and so-called annihilation corrections. The NNLL corrections at $sqrt{s}=13$ TeV range from up to $20%$ for squark-squark production to $90%$ for gluino pair production relative to the NLO results and reduce the theoretical uncertainties of the perturbative calculation to the $10%$ level. Grid files with our numerical results are publicly available.
130 - P. Falgari 2012
We present predictions of the total cross sections for pair production of squarks and gluinos at the LHC, including the stop-antistop production process. Our calculation supplements full fixed-order NLO predictions with resummation of threshold logarithms and Coulomb singularities at next-to-leading logarithmic (NLL) accuracy, including bound-state effects. The numerical effect of higher-order Coulomb terms can be as big or larger than that of soft-gluon corrections. For a selection of benchmark points accessible with data from the 2010-2012 LHC runs, resummation leads to an enhancement of the total inclusive squark and gluino production cross section in the 15-30 % range. For individual production processes of gluinos, the corrections can be much larger. The theoretical uncertainty in the prediction of the hard-scattering cross sections is typically reduced to the 10 % level.
The production of supersymmetric stop-antistop pairs at the Large Hadron Collider (LHC) is studied including corrections from soft-gluon resummation up to next-to-next-to-leading logarithmic (NNLL) accuracy in the Mellin-space approach. Additionally, corrections to the hard-matching coefficient at one-loop and Coulomb contributions at two-loop order are considered. The NNLL corrections enhance the cross section for all stop masses at centre-of-mass energies of 8 and 13 TeV compared to the previously calculated predictions at next-to-leading logarithmic (NLL) accuracy. Furthermore, a slight increase in the dependence on the additional stop-mixing parameters is observed.
151 - B. Fuks , M. Klasen , M. Rothering 2016
We perform a threshold resummation calculation for the associated production of gluinos and gauginos at the LHC to the next-to-leading logarithmic accuracy. Analytical results are presented for the process-dependent soft anomalous dimension and the hard function. The resummed results are matched to a full next-to-leading order calculation, for which we have generalised the previously known results to the case of supersymmetric scenarios featuring non-universal squark masses. Numerically, the next-to-leading logarithmic contributions increase the total next-to-leading order cross section by 7 to 20% for central scale choices and gluino masses of 3 to 6 TeV, respectively, and reduce its scale dependence typically from up to $pm12$% to below $pm3$%.
137 - K. Hidaka 2012
We study the effects of squark generation mixing on squark and gluino production and decays at LHC in the Minimal Supersymmetric Standard Model (MSSM) with focus on the mixing between second and third generation squarks. Taking into account the constraints from B-physics experiments we show that various regions in parameter space exist where decays of squarks and/or gluinos into quark flavour violating (QFV) final states can have large branching ratios. Here we consider both fermionic and bosonic decays of squarks. Rates of the corresponding QFV signals, e.g. pp -> t t bar{c} bar{c} missing-E_T X, can be significant at LHC(14 TeV). We find that the inclusion of flavour mixing effects can be important for the search of squarks and gluinos and the determination of the underlying model parameters of the MSSM at LHC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا