Do you want to publish a course? Click here

Light fan driven by relativistic laser pulse

123   0   0.0 ( 0 )
 Added by Yin Shi
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

When a relativistic laser pulse with high photon density interacts with a specially tailored thin foil target, a strong torque is exerted on the resulting spiral-shaped foil plasma, or light fan. Because of its structure, the latter can gain significant orbital angular momentum (OAM), and the opposite OAM is imparted to the reflected light, creating a twisted relativistic light pulse. Such an interaction scenario is demonstrated by particle-in-cell simulation as well as analytical modeling, and should be easily verifiable in the laboratory. As important characters, twisted relativistic light pulse has strong torque and ultra-high OAM density.



rate research

Read More

Three-dimensional particle-in-cell simulation is used to investigate the witness proton acceleration in underdense plasma with a short intense Laguerre-Gaussian (LG) laser pulse. Driven by the LG10 laser pulse, a special bubble with an electron pillar on the axis is formed, in which protons can be well-confined by the generated transversal focusing field and accelerated by the longitudinal wakefield. The risk of scattering prior to acceleration with a Gaussian laser pulse in underdense plasma is avoided, and protons are accelerated stably to much higher energy. In simulation, a proton beam has been accelerated to 7 GeV from 1 GeV in underdense tritium plasma driven by a 2.14x1022 W/cm2 LG10 laser pulse.
194 - S. Kar , A. Green , H. Ahmed 2015
We report on the experimental observation of beam-like neutron emission with peak flux of the order of 10^9 n/sr, from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by high power laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of 70 degrees, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)^1H and d(d,n)^3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.
84 - Longqing Yi , Tunde Fulop 2019
We propose a method to generate isolated relativistic terahertz (THz) pulses using a high-power laser irradiating a mirco-plasma-waveguide (MPW). When the laser pulse enters the MPW, high-charge electron bunches are produced and accelerated to ~ 100 MeV by the transverse magnetic modes. A substantial part of the electron energy is transferred to THz emission through coherent diffraction radiation as the electron bunches exit the MPW. We demonstrate this process with three-dimensional particle-in-cell simulations. The frequency of the radiation is determined by the incident laser duration, and the radiated energy is found to be strongly correlated to the charge of the electron bunches, which can be controlled by the laser intensity and micro-engineering of the MPW target. Our simulations indicate that 100-mJ level relativistic-intense THz pulses with tunable frequency can be generated at existing laser facilities, and the overall efficiency reaches 1%.
160 - Suo Tang , Naveen Kumar 2018
We develop an analytical model for ultraintense attosecond pulse emission in the highly relativistic laser-plasma interaction. In this model, the attosecond pulse is emitted by a strongly compressed electron layer around the instant when the layer transverse current changes the sign and its longitudinal velocity approaches the maximum. The emitted attosecond pulse has a broadband exponential spectrum and a stabilized constant spectral phase $psi(omega)=pmpi/2-psi_{A_m}$. The waveform of the attosecond pulse is also given explicitly, to our knowledge, for the first time. We validate the analytical model via particle-in-cell (PIC) simulations for both normal and oblique incidence. Based on this model, we highlight the potential to generate an isolated ultraintense phase-stabilized attosecond pulse
Relativistic electrons generated by the interaction of petawatt-class short laser pulses with solid targets can be used to generate bright X-rays via bremsstrahlung. The efficiency of laser energy transfer into these electrons depends on multiple parameters including the focused intensity and pre-plasma level. This paper reports experimental results from the interaction of a high intensity petawatt-class glass laser pulses with solid targets at a maximum intensity of $10^{19}$ W/cm$^2$. In-situ measurements of specularly reflected light are used to provide an upper bound of laser absorption and to characterize focused laser intensity, the pre-plasma level and the generation mechanism of second harmonic light. The measured spectrum of electrons and bremsstrahlung radiation provide information about the efficiency of laser energy transfer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا