Do you want to publish a course? Click here

Magnetic field topology of the unique chemically peculiar star CU Virginis

162   0   0.0 ( 0 )
 Added by Oleg Kochukhov
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The late-B magnetic chemically peculiar star CU Vir is one of the fastest rotators among the intermediate-mass stars with strong fossil magnetic fields. It shows a prominent rotational modulation of the spectral energy distribution and absorption line profiles due to chemical spots and exhibits a unique strongly beamed variable radio emission. Little is known about the magnetic field topology of CU Vir. In this study we aim to derive, for the first time, detailed maps of the magnetic field distribution over the surface of this star. We use high-resolution spectropolarimetric observations covering the entire rotational period. These data are interpreted using a multi-line technique of least-squares deconvolution (LSD) and a new Zeeman Doppler imaging code based on detailed polarised radiative transfer modelling of the Stokes I and V LSD profiles. This new magnetic inversion approach relies on the spectrum synthesis calculations over the full wavelength range covered by observations and does not assume that the LSD profiles behave as a single spectral line with mean parameters. We present magnetic and chemical abundance maps derived from the Si and Fe lines. Mean polarisation profiles of both elements reveal a significant departure of the magnetic field topology of CU Vir from the commonly assumed axisymmetric dipolar configuration. The field of CU Vir is dipolar-like, but clearly non-axisymmetric, showing a large difference of the field strength between the regions of opposite polarity. The main relative abundance depletion features in both Si and Fe maps coincide with the weak-field region in the magnetic map. Detailed information on the distorted dipolar magnetic field topology of CU Vir provided by our study is essential for understanding chemical spot formation, radio emission, and rotational period variation of this star.



rate research

Read More

287 - S. Joshi 2012
In this paper we present a high-resolution spectroscopic analysis of the chemically peculiar star HD207561. During a survey programme to search for new roAp stars in the Northern hemisphere, Joshi et al. (2006) observed significant photometric variability on two consecutive nights in the year 2000. The amplitude spectra of the light curves obtained on these two nights showed oscillations with a frequency of 2.79 mHz [P~6-min]. However, subsequent follow-up observations could not confirm any rapid variability. In order to determine the spectroscopic nature of HD207561, high-resolution spectroscopic and spectro-polarimetric observations were carried out. A reasonable fit of the calculated Hbeta line profile to the observed one yields the effective temperature (Teff) and surface gravity (log g) as 7300 K and 3.7 dex, respectively. The derived projected rotational velocity (vsin i) for HD207561 is 74 km/sec indicative of a relatively fast rotator. The position of HD207561 in the H-R diagram implies that this is slightly evolved from the main-sequence and located well within the delta-Scuti instability strip. The abundance analysis indicates the star has slight under-abundances of Ca and Sc and mild over-abundances of iron-peak elements. The spectro-polarimetric study of HD207561 shows that the effective magnetic field is within the observational error of 100 gauss (G). The spectroscopic analysis revealed that the star has most of the characteristics similar to an Am star, rather than an Ap star, and that it lies in the delta-Scuti instability strip; hence roAp pulsations are not expected in HD207561, but low-overtone modes might be excited.
We search for a relation between the published distributions of different elements and the calculated magnetic field structure, following from a dipole-quadrupole configuration, of the CP2 star CU Vir. The highest concentration of individual chemical elements on the stellar surface coincides obviously with the regions of the highest values of the magnetic field strength.
BS Cir is a representative of moderately cool magnetic chemically peculiar stars which displays very strong light variations in Stroemgren index c1 indicating large changes in the height of the Balmer jump. We present two-spot model of light variations fitting successfully all of nine light curves obtained in the spectral region 335-750 nm. We also discuss the nature of the observed variations of intensities of Fe, Cr, Ti, Si, Mg and RE spectral lines and possible mechanisms matching the observed light variations. It was confirmed that the observed period of BS Cir 2.204 d is rising with the rate of dP/dt=5.4(4)x10^-9. The found minor secular changes in the shape of light curve should be compatible with the period changes caused by precessional motion due to magnetic distortion of the star.
The determination of fundamental parameters of stars is one of the main tasks of astrophysics. For magnetic chemically peculiar stars, this problem is complicated by the anomalous chemical composition of their atmospheres, which requires special analysis methods. We present the results of the effective temperature, surface gravity, abundance and radius determinations for three CP stars HD 188041, HD 111133, and HD 204411. Our analysis is based on a self-consistent model fitting of high-resolution spectra and spectrophrotometric observations over a wide wavelength range, taking into account the anomalous chemical composition of atmospheres and the inhomogeneous vertical distribution for three chemical elements: Ca, Cr, and Fe. For two stars, HD 188041 and HD 204411, we also performed interferometric observations which provided us with the direct estimates of stellar radii. Parameters for another 8 CP stars are collected. Comparison of the radii determined from the analysis of spectroscopic/spectrophotometric observations with direct measurements of the radii by interferometry methods for seven CP stars shows that the radii agree within the limits of measurement errors, which proves indirect spectroscopic analysis capable of proving reliable determinations of the fundamental parameters of fainter Ap stars that are not possible to study with modern interferometric facilities.
Since the discovery of the spectral peculiarities of their prototype alpha2 Canum Venaticorum in 1897, the so-called ACV variables, which are comprised of several groups of chemically peculiar stars of the upper main sequence, have been the target of numerous photometric and spectroscopic studies. Especially for the brighter ACV variables, continuous observations over about a century are available, which are important to study long-term effects such as period changes or magnetic cycles in these objects. The present work presents an analysis of 165 Ap/CP2 and He-weak/CP4 stars using light curves obtained by the Solar Mass Ejection Imager (SMEI) between the years 2003 and 2011. These data fill an important gap in observations for bright ACV variables between the Hipparcos and TESS satellite missions. Using specifically tailored data treatment and period search approaches, we find variability in the accuracy limit of the employed data in 84 objects. The derived periods are in excellent agreement with the literature; for one star, the here presented solution represents the first published period. We discuss the apparently constant stars and the corresponding level of non-variability. From an investigation of our target star sample in the Hertzsprung-Russell diagram, we deduce ages between 100 Myr and 1 Gyr for the majority of our sample stars. Our results support that the variable CP2/4 stars are in a more advanced evolutionary state and that He and Si peculiarities, preferentially found in the hotter, and thus more massive, CP stars, produce larger spots or spots of higher contrast.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا