Do you want to publish a course? Click here

Cost-oblivious storage reallocation

157   0   0.0 ( 0 )
 Added by Sandor P. Fekete
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Databases need to allocate and free blocks of storage on disk. Freed blocks introduce holes where no data is stored. Allocation systems attempt to reuse such deallocated regions in order to minimize the footprint on disk. If previously allocated blocks cannot be moved, the problem is called the memory allocation problem, which is known to have a logarithmic overhead in the footprint. This paper defines the storage reallocation problem, where previously allocated blocks can be moved, or reallocated, but at some cost. The algorithms presented here are cost oblivious, in that they work for a broad and reasonable class of cost functions, even when they do not know what the cost function is. The objective is to minimize the storage footprint, that is, the largest memory address containing an allocated object, while simultaneously minimizing the reallocation costs. This paper gives asymptotically optimal algorithms for storage reallocation, in which the storage footprint is at most (1+epsilon) times optimal, and the reallocation cost is at most (1/epsilon) times the original allocation cost, which is also optimal. The algorithms are cost oblivious as long as the allocation/reallocation cost function is subadditive.



rate research

Read More

We prove the existence of an oblivious routing scheme that is $mathrm{poly}(log n)$-competitive in terms of $(congestion + dilation)$, thus resolving a well-known question in oblivious routing. Concretely, consider an undirected network and a set of packets each with its own source and destination. The objective is to choose a path for each packet, from its source to its destination, so as to minimize $(congestion + dilation)$, defined as follows: The dilation is the maximum path hop-length, and the congestion is the maximum number of paths that include any single edge. The routing scheme obliviously and randomly selects a path for each packet independent of (the existence of) the other packets. Despite this obliviousness, the selected paths have $(congestion + dilation)$ within a $mathrm{poly}(log n)$ factor of the best possible value. More precisely, for any integer hop-bound $h$, this oblivious routing scheme selects paths of length at most $h cdot mathrm{poly}(log n)$ and is $mathrm{poly}(log n)$-competitive in terms of $congestion$ in comparison to the best possible $congestion$ achievable via paths of length at most $h$ hops. These paths can be sampled in polynomial time. This result can be viewed as an analogue of the celebrated oblivious routing results of R{a}cke [FOCS 2002, STOC 2008], which are $O(log n)$-competitive in terms of $congestion$, but are not competitive in terms of $dilation$.
A mesh is a graph that divides physical space into regularly-shaped regions. Meshes computations form the basis of many applications, e.g. finite-element methods, image rendering, and collision detection. In one important mesh primitive, called a mesh update, each mesh vertex stores a value and repeatedly updates this value based on the values stored in all neighboring vertices. The performance of a mesh update depends on the layout of the mesh in memory. This paper shows how to find a memory layout that guarantees that the mesh update has asymptotically optimal memory performance for any set of memory parameters. Such a memory layout is called cache-oblivious. Formally, for a $d$-dimensional mesh $G$, block size $B$, and cache size $M$ (where $M=Omega(B^d)$), the mesh update of $G$ uses $O(1+|G|/B)$ memory transfers. The paper also shows how the mesh-update performance degrades for smaller caches, where $M=o(B^d)$. The paper then gives two algorithms for finding cache-oblivious mesh layouts. The first layout algorithm runs in time $O(|G|log^2|G|)$ both in expectation and with high probability on a RAM. It uses $O(1+|G|log^2(|G|/M)/B)$ memory transfers in expectation and $O(1+(|G|/B)(log^2(|G|/M) + log|G|))$ memory transfers with high probability in the cache-oblivious and disk-access machine (DAM) models. The layout is obtained by finding a fully balanced decomposition tree of $G$ and then performing an in-order traversal of the leaves of the tree. The second algorithm runs faster by almost a $log|G|/loglog|G|$ factor in all three memory models, both in expectation and with high probability. The layout obtained by finding a relax-balanced decomposition tree of $G$ and then performing an in-order traversal of the leaves of the tree.
We present a streaming problem for which every adversarially-robust streaming algorithm must use polynomial space, while there exists a classical (oblivious) streaming algorithm that uses only polylogarithmic space. This is the first separation between oblivious streaming and adversarially-robust streaming, and resolves one of the central open questions in adversarial robust streaming.
We prove an $Omega(d lg n/ (lglg n)^2)$ lower bound on the dynamic cell-probe complexity of statistically $mathit{oblivious}$ approximate-near-neighbor search ($mathsf{ANN}$) over the $d$-dimensional Hamming cube. For the natural setting of $d = Theta(log n)$, our result implies an $tilde{Omega}(lg^2 n)$ lower bound, which is a quadratic improvement over the highest (non-oblivious) cell-probe lower bound for $mathsf{ANN}$. This is the first super-logarithmic $mathit{unconditional}$ lower bound for $mathsf{ANN}$ against general (non black-box) data structures. We also show that any oblivious $mathit{static}$ data structure for decomposable search problems (like $mathsf{ANN}$) can be obliviously dynamized with $O(log n)$ overhead in update and query time, strengthening a classic result of Bentley and Saxe (Algorithmica, 1980).
Kernel methods are fundamental tools in machine learning that allow detection of non-linear dependencies between data without explicitly constructing feature vectors in high dimensional spaces. A major disadvantage of kernel methods is their poor scalability: primitives such as kernel PCA or kernel ridge regression generally take prohibitively large quadratic space and (at least) quadratic time, as kernel matrices are usually dense. Some methods for speeding up kernel linear algebra are known, but they all invariably take time exponential in either the dimension of the input point set (e.g., fast multipole methods suffer from the curse of dimensionality) or in the degree of the kernel function. Oblivious sketching has emerged as a powerful approach to speeding up numerical linear algebra over the past decade, but our understanding of oblivious sketching solutions for kernel matrices has remained quite limited, suffering from the aforementioned exponential dependence on input parameters. Our main contribution is a general method for applying sketching solutions developed in numerical linear algebra over the past decade to a tensoring of data points without forming the tensoring explicitly. This leads to the first oblivious sketch for the polynomial kernel with a target dimension that is only polynomially dependent on the degree of the kernel function, as well as the first oblivious sketch for the Gaussian kernel on bounded datasets that does not suffer from an exponential dependence on the dimensionality of input data points.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا