No Arabic abstract
In recent years, wide-field sky surveys providing deep multi-band imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SN): systematic light curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 years and classified using both spectroscopy and machine learning-based photometric techniques. We develop and apply a new Bayesian model for the full multi-band evolution of each light curve in the sample. We find no evidence of a sub-population of fast-declining explosions (historically referred to as Type IIL SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for supernova cosmology, offering a standardizable candle good to an intrinsic scatter of 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light curve properties and an expanded grid of progenitor properties, are needed to enable robust progenitor inferences from multi-band light curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide field transient searches.
We present multi-band photometry and spectroscopy of SN 2018cuf, a Type IIP (P for plateau) supernova (SN) discovered by the Distance Less Than 40 Mpc survey (DLT40) within 24 hours of explosion. SN 2018cuf appears to be a typical Type IIP SN, with an absolute $V$-band magnitude of $-$16.73 $pm$ 0.32 at maximum and a decline rate of 0.21 $pm$ 0.05 mag/50d during the plateau phase. The distance of the object is constrained to be 41.8 $pm$ 5.7 Mpc by using the expanding photosphere method. We use spectroscopic and photometric observations from the first year after the explosion to constrain the progenitor of SN 2018cuf using both hydrodynamic light curve modelling and late-time spectroscopic modelling. The progenitor of SN 2018cuf was most likely a red supergiant of about 14.5 $rm M_{odot}$ that produced 0.04 $pm$ 0.01 $rm M_{odot}$ $rm ^{56}Ni$ during the explosion. We also found $sim$ 0.07 $rm M_{odot}$ of circumstellar material (CSM) around the progenitor is needed to fit the early light curves, where the CSM may originate from pre-supernova outbursts. During the plateau phase, high velocity features at $rm sim 11000 km~s^{-1}$ are detected both in the optical and near-infrared spectra, supporting the possibility that the ejecta were interacting with some CSM. A very shallow slope during the post-plateau phase is also observed and it is likely due to a low degree of nickel mixing or the relatively high nickel mass in the SN.
The CNIa0.02 is a complete, nearby sample of Type Ia supernova (SN Ia) multiband light curves, and it is volume-limited with host-galaxy redshift z_host<0.02. The scientific goal of CNIa0.02 is to infer the distributions of key properties (e.g., the luminosity function) of local SNe Ia in a complete and unbiased fashion in order to study SN explosion physics. We spectroscopically classify any SN candidate detected (discovered or recovered) by the All-Sky Automated Survey for Supernovae (ASAS-SN) that reaches peak brightness <16.5 mag. Since ASAS-SN scans the full sky and does not target specific galaxies, the sample is effectively unbiased by host-galaxy properties. We obtain multiband photometric observations starting from the time of discovery. In the first data release (DR1), we present the optical light curves obtained for 240 SNe (including 182 with multiband data), and we derive parameters such as the peak fluxes and dm15.
With the same method as used previously, we investigate neutrino-driven explosions of a larger sample of blue supergiant models. The larger sample includes three new presupernova stars. The results are compared with light-curve observations of the peculiar type IIP SN 1987A. The explosions were modeled in 3D with the neutrino-hydrodynamics code PROMETHEUS-HOTB, and light-curve calculations were performed in spherical symmetry with the radiation-hydrodynamics code CRAB. Our results confirm the basic findings of the previous work: 3D neutrino-driven explosions with SN 1987A-like energies synthesize an amount of Ni-56 that is consistent with the radioactive tail of the light curve. Moreover, the models mix hydrogen inward to minimum velocities below 400 km/s as required by spectral observations. Hydrodynamic simulations with the new progenitor models, which possess smaller radii than the older ones, show much better agreement between calculated and observed light curves in the initial luminosity peak and during the first 20 days. A set of explosions with similar energies demonstrated that a high growth factor of Rayleigh-Taylor instabilities at the (C+O)/He composition interface combined with a weak interaction of fast Rayleigh-Taylor plumes, where the reverse shock occurs below the He/H interface, provides a sufficient condition for efficient outward mixing of Ni-56 into the hydrogen envelope. This condition is realized to the required extent only in one of the older stellar models, which yielded a maximum velocity of around 3000 km/s for the bulk of ejected Ni-56, but failed to reproduce the helium-core mass of 6 Msun inferred from the absolute luminosity of the presupernova star. We conclude that none of the single-star progenitor models proposed for SN 1987A to date satisfies all constraints set by observations. (Abridged)
We present results based on follow-up observations of the Type II-plateau supernova (SN) 2013ej at 6 epochs spanning a total duration of $sim$37 d. The $R_{c}$-band linear polarimetric observations were carried out between the end of the plateau and the beginning of the nebular phases as noticed in the photometric light curve. The contribution due to interstellar polarization (ISP) was constrained by using couple of approaches, i.e. based upon the observations of foreground stars lying within 5arcmin, and 10$degr$ radius of the SN location and also investigating the extinction due to the Milky Way and host galaxy towards the SN direction. Our analysis revealed that in general the intrinsic polarization of the SN is higher than the polarization values for the foreground stars and exhibits an increasing trend during our observations. After correcting the ISP of $sim$0.6 per cent, the maximum intrinsic polarization of SN~2013ej is found to be 2.14 $pm$ 0.57 per cent. Such a strong polarization has rarely been seen in Type II-P SNe. If this is the case, i.e., the `polarization bias effect is still negligible, the polarization could be attributed to the asymmetry of the inner ejecta of the SN because the ISP towards the SN location is estimated to be, at most, 0.6 per cent.
Type Ic supernovae (SNe Ic) arise from the core-collapse of H (and He) poor stars, which could be either single WR stars or lower-mass stars stripped of their envelope by a companion. Their light curves are radioactively powered and usually show a fast rise to peak ($sim$10-15 d), without any early (first few days) emission bumps (with the exception of broad-lined SNe Ic) as sometimes seen for other types of stripped-envelope SNe (e.g., Type IIb SN 1993J and Type Ib SN 2008D). We have studied iPTF15dtg, a spectroscopically normal SN Ic with an early excess in the optical light curves followed by a long ($sim$30 d) rise to the main peak. It is the first spectroscopically-normal double-peaked SN Ic observed. We aim to determine the properties of this explosion and of its progenitor star. Optical photometry and spectroscopy of iPTF15dtg was obtained with multiple telescopes. The resulting light curves and spectral sequence are analyzed and modelled with hydrodynamical and analytical models, with particular focus on the early emission. Results. iPTF15dtg is a slow rising SN Ic, similar to SN 2011bm. Hydrodynamical modelling of the bolometric properties reveals a large ejecta mass ($sim$10 $M_{odot}$) and strong $^{56}$Ni mixing. The luminous early emission can be reproduced if we account for the presence of an extended ($sim$500 R$_{odot}$), low-mass ($sim$0.045 M$_{odot}$) envelope around the progenitor star. Alternative scenarios for the early peak, such as the interaction with a companion, a shock-breakout (SBO) cooling tail from the progenitor surface, or a magnetar-driven SBO are not favored. The large ejecta mass and the presence of H and He free extended material around the star suggest that the progenitor of iPTF15dtg was a massive ($gtrsim$ 35 M$_{odot}$) WR star suffering strong mass loss.