We report on $J/psi$ production from asymmetric Cu+Au heavy-ion collisions at $sqrt{s_{_{NN}}}$=200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of $J/psi$ yields in Cu$+$Au collisions in the Au-going direction is found to be comparable to that in Au$+$Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, $J/psi$ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-$x$ gluon suppression in the larger Au nucleus. The relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.
The $jpsi$ $pt$ spectrum and nuclear modification factor ($raa$) are reported for $pt < 5 gevc$ and $|y|<1$ from 0% to 60% central Au+Au and Cu+Cu collisions at $snn = 200 gev$ at STAR. A significant suppression of $pt$-integrated $jpsi$ production is observed in central Au+Au events. The Cu+Cu data are consistent with no suppression, although the precision is limited by the available statistics. $raa$ in Au+Au collisions exhibits a strong suppression at low transverse momentum and gradually increases with $pt$. The data are compared to high-$pt$ STAR results and previously published BNL Relativistic Heavy Ion Collider results. Comparing with model calculations, it is found that the invariant yields at low $pt$ are significantly above hydrodynamic flow predictions but are consistent with models that include color screening and regeneration.
We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair transverse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3pm0.4({rm stat})pm0.4({rm syst})pm0.2^{rm model}$ or to $1.7pm0.3({rm stat})pm0.3({rm syst})pm0.2^{rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {sc pythia} or {sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.
The azimuthal anisotropic flow of identified and unidentified charged particles has been systematically studied in Cu+Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV for harmonics $n=$ 1-4 in the pseudorapidity range $|eta|<1$. The directed flow in Cu+Au collisions is compared with the rapidity-odd and, for the first time, the rapidity-even components of charged particle directed flow in Au+Au collisions at $sqrt{s_{_{NN}}}$ = 200~GeV. The slope of the directed flow pseudorapidity dependence in Cu+Au collisions is found to be similar to that in Au+Au collisions, with the intercept shifted toward positive $eta$ values, i.e., the Cu-going direction. The mean transverse momentum projected onto the spectator plane, $langle p_xrangle$, in Cu+Au collision also exhibits approximately linear dependence on $eta$ with the intercept at about $etaapprox-0.4$, closer to the rapidity of the Cu+Au system center-of-mass. The observed dependencies find natural explanation in a picture of the directed flow originating partly due the tilted source and partly due to the rapidity dependent asymmetry in the initial density distribution. Charge-dependence of the $langle p_xrangle$ was also observed in Cu+Au collisions, indicating an effect of the initial electric field created by charge difference of the spectator protons in two colliding nuclei. The rapidity-even component of directed flow in Au+Au collisions is close to that in Pb+Pb collisions at $sqrt{s_{_{NN}}}$ = 2.76 TeV, indicating a similar magnitude of dipole-like fluctuations in the initial-state density distribution. Higher harmonic flow in Cu+Au collisions exhibits similar trends to those observed in Au+Au and Pb+Pb collisions and is qualitatively reproduced by a viscous hydrodynamic model and a multi-phase transport model. For all harmonics with $nge2$ we observe an approximate scaling of $v_n$ with the number of constituent quarks.
We report $J/psi$ spectra for transverse momenta $p_T$> 5 GeV/$c$ at mid-rapidity in p+p and Au+Au collisions at sqrt(s_{NN}) = 200 GeV.The inclusive $J/psi$ spectrum and the extracted $B$-hadron feed-down are compared to models incorporating different production mechanisms. We observe significant suppression of the $J/psi$ yields for $p_T$> 5 GeV/$c$ in 0-30% Au+Au collisions relative to the p+p yield scaled by the number of binary nucleon-nucleon collisions in Au+Au collisions. In 30-60% collisions, no such suppression is observed.The level of suppression is consistently less than that of high-$p_T$ $pi^{pm}$ and low-$p_T$ $J/psi$.
We report new STAR measurements of mid-rapidity yields for the $Lambda$, $bar{Lambda}$, $K^{0}_{S}$, $Xi^{-}$, $bar{Xi}^{+}$, $Omega^{-}$, $bar{Omega}^{+}$ particles in Cu+Cu collisions at sNN{200}, and mid-rapidity yields for the $Lambda$, $bar{Lambda}$, $K^{0}_{S}$ particles in Au+Au at sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions.
C. Aidala
,N.N. Ajitanand
,Y. Akiba
.
(2014)
.
"Nuclear matter effects on $J/psi$ production in asymmetric Cu+Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV"
.
Brant M. Johnson
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا