The Largest Gravitationally Bound Structures: The Corona Borealis Supercluster - Mass and Bound Extent


Abstract in English

Recent simulations of the densest portion of the Corona Borealis supercluster (A2061, A2065, A2067, and A2089) have shown virtually no possibility of extended gravitationally bound structure without inter-cluster matter (Pearson & Batuski). In contrast, recent analyses of the dynamics found that the clusters had significant peculiar velocities towards the supercluster centroid (Batiste & Batuski). In this paper we present the results of a thorough investigation of the CSC: we determine redshifts and virial masses for all 8 clusters associated with the CSC; repeat the analysis of Batiste & Batuski with the inclusion of A2056 and CL1529+29; estimate the mass of the supercluster by applying the virial theorem on the supercluster scale (e.g. Small et al.), the caustics method (e.g. Reisenegger et al.), and a new procedure using the spherical collapse model (SCM) with the results of the dynamical analysis (SCM+FP); and perform a series of simulations to assess the likelihood of the CSC being a gravitationally bound supercluster. We find that the mass of the CSC is between 0.6 and 12 x 10^{16} h^{-1} M_{sun}. The dynamical analysis, caustics method and the SCM+FP indicate that the structure is collapsing, with the latter two both indicating a turn around radius of about 12.5 h^{-1} Mpc. Lastly, the simulations show that with a reasonable amount of inter-cluster mass, there is likely extended bound structure in the CSC. Our results suggest that A2056, A2061, A2065, A2067, and A2089 form a gravitationally bound supercluster.

Download