The dark nature of GRB 130528A and its host galaxy


Abstract in English

We study the dark nature of GRB 130528A through multi-wavelength observations and conclude that the main reason for the optical darkness is local extinction inside of the host galaxy. Automatic observations were performed at BOOTES-4/MET robotic telescope. We also triggered target of opportunity (ToO) observation at the OSN, IRAM PdBI and the GTC+OSIRIS. The host galaxy photometric observations in optical to near-infrared (nIR) wavelengths were achieved through large ground-based aperture telescopes, such as the 10.4m GTC, the 4.2m WHT, 6m BTA, and the 2m LT. Based on these observations, spectral energy distributions (SED) for the host galaxy and afterglow were constructed. Thanks to mm observations at PdBI, we confirm the presence of a mm source within the XRT error circle that faded over the course of our observations and identify the host galaxy. However, we do not find any credible optical source within early observations with BOOTES-4/MET and 1.5m OSN telescopes. Spectroscopic observation of this galaxy by GTC showed a single faint emission line that likely corresponds to [OII] 3727{AA} at a redshift of 1.250+/-0.001 implying a SFR(M_sun/yr) > 6.18 M_sun/yr without correcting for dust extinction. The probable extinction was revealed through analysis of the afterglow SED, resulting in a value of AV >= ~ 0.9 at the rest frame, this is comparable to extinction levels found among other dark GRBs. The SED of the host galaxy is explained well (chi2/d.o.f.=0.564) by a luminous (MB=-21.16), low-extinction (AV =0, rest frame), and aged (2.6 Gyr) stellar population. We can explain this apparent contradiction in global and line-of-sight extinction if the GRB birth place happened to lie in a local dense environment. In light of having relatively small specific SFR (SSFR) ~ 5.3 M_sun/yr (L/L_star)-1, this also could explain the age of the old stellar population of host galaxy.

Download