Do you want to publish a course? Click here

The environment of the unidentified gamma-ray source HESS J1507-622

224   0   0.0 ( 0 )
 Added by Wilfried Domainko
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nature of the gamma-ray source HESS J1507-622 that is located significantly off-set from the Galactic plane is not ascertained to date. Identifying the environment of an enigmatic object may help to constrain its nature. The path of the line of sight of HESS J1507-622 through the Galaxy is compared to the characteristic length scales of stellar populations of different ages. Furthermore, for this object, the energy density in particles is contrasted to the magnetic field energy density and constraints on the distance based on equipartition between these two components are calculated. The line of sight of HESS J1507-622 reaches a minimum distance to the Galactic center at around a galactocentric distance of 5.3 kpc at about 300 pc off the Galactic disc. This location coincides with the scale length and width of stars with an age of 1.2 Gyr which could in principle be an indication that HESS J1507-622 is connected to a stellar population of similar age. For such a case the source appears to be strongly particle dominated. In a leptonic scenario, if a magnetic field in the source of 1 $mu$G is assumed, equipartition between magnetic field and particles would be realized at a distance of >1 Mpc. This could indicate an extragalactic origin of this object. However, an extragalactic origin is challenged by the extension of the source. The environment of HESS J1507-622 still remains elusive. For the case where this source belongs to a new class of gamma-ray emitters, the distribution of related objects (if existing) may help to settle the respective environment and distance scale.



rate research

Read More

The nature of the first unidentified VHE gamma-ray source with significant angular offset from the Galactic plane of 3.5 degrees, HESS J1507-622, is explored. Fermi-LAT data in the high-energy (HE, 100 MeV < E < 100 GeV) gamma-ray range collected over 34 month are used to describe the spectral energy distribution (SED) of the source. HESS J1507-622 is detected in the Fermi energy range and its spectrum is best described by a power law in energy with Gamma=1.7 +/- 0.1 stat +/- 0.2_sys and integral flux between (0.3-300) GeV of F = (2.0 +/-0.5_stat +/- 1.0_sys) x 10^-9 cm^-2 s^-1. With the available data it is not possible to discriminate between a hadronic and a leptonic scenario for HESS J1507-622. The location and compactness of the source indicate a considerable physical offset from the Galactic plane for this object. In case of a multiple-kpc distance, this challenges a pulsar wind nebula (PWN) origin for HESS J1507-622 since the time of travel for a pulsar born in the Galactic disk to reach such a location would exceed the inverse Compton (IC) cooling time of electrons that are energetic enough to produce VHE gamma-rays. However, an origin of this gamma-ray source connected to a pulsar that was born off the Galactic plane in the explosion of a hypervelocity star cannot be excluded. The nature of HESS J1507-622 is still unknown to date, and a PWN scenario cannot be ruled out in general. On the contrary HESS J1507-622 could be the first discovered representative of a population of spatially extended VHE gamma-ray emitters with HE gamma-ray counterpart that are located at considerable offsets from the Galactic plane. Future surveys in the VHE gamma-ray range are necessary to probe the presence or absence of such a source population.(abridged)
161 - O. Tibolla , S. Kaufmann , 2014
Context. The discovery of the unique source HESS J1507-622 in the very high energy (VHE) range (100 GeV-100 TeV) opened new possibilities to study the parent population of ultra-relativistic particles found in astrophysical sources and underlined the possibility of new scenarios/mechanisms crucial for understanding the underlying astrophysical processes in nonthermal sources. Aims. The follow-up X-ray (0.2 - 10 keV) observations on HESS J1507-622 are reported, and possibilities regarding the nature of the VHE source and that of the newly discovered X-ray sources are investigated. Methods.We obtained bservations with the X-ray satellites XMM-Newton and Chandra. Background corrections were applied to the data to search for extended diffuse emission. Since HESS J1507-622 covers a large part of the field of view of these instruments, blank-sky background fields were used. Results. The discovery of several new X-ray sources and a new, faint, extended X-ray source with a flux of ~6e-14 erg cm^-2 s^-1 is reported. Interestingly, a new, variable point-like X-ray source with a flux of ~8e-14 erg cm^-2 s^-1 appeared in the 2011 observation, which was not detected in the previous X-ray observations. Conclusions. The X-ray observations revealed a faint, extended X-ray source that may be a possible counterpart for HESS J1507-622. This source could be an X-ray pulsar wind nebula (PWN) remnant of the larger gamma-ray PWN, which is still bright in IC emission. Several interpretations are proposed to explain the newly detected variable X-ray source.
Context: The detection of gamma-rays in the very-high-energy (VHE) range (100 GeV-100 TeV) offers the possibility of studying the parent population of ultrarelativistic particles found in astrophysical sources, so it is useful for understanding the underlying astrophysical processes in nonthermal sources. Aim: The discovery of the VHE gamma-ray source HESS J1507-622 is reported and possibilities regarding its nature are investigated. Methods: The H.E.S.S. array of imaging atmospheric Cherenkov telescopes (IACTs) has a high sensitivity compared with previous instruments (~1% of the Crab flux in 25 hours observation time for a 5 sigma point-source detection) and has a large field of view (~5 deg in diameter). HESS J1507-622 was discovered within the ongoing H.E.S.S. survey of the inner Galaxy, and the source was also studied by means of dedicated multiwavelength observations. Results: A Galactic gamma-ray source, HESS J1507-622, located ~3.5 deg from the Galactic plane was detected with a statistical significance > 9 sigma. Its energy spectrum is well fitted by a power law with spectral index Gamma = 2.24 +/- 0.16_{stat} +/- 0.20_{sys} and a flux above 1 TeV of (1.5 +/- 0.4_{stat} +/- 0.3_{sys}) X 10^{-12} cm^{-2} s^{-1}. Possible interpretations (considering both hadronic and leptonic models) of the VHE gamma-ray emission are discussed in the absence of an obvious counterpart.
346 - H. Matsumoto 2014
HESS J1507-622 is one of the bright unidentified TeV objects. HESS J1507-622 is unique, since the location of the object is off the Galactic disk. We observed the HESS J1507-622 region with the Suzaku XIS, and found no obvious counterpart although there is no severe interstellar extinction. However, there are two interesting X-ray objects; SRC1 is a bright extended source, and SRC2 is a faint diffuse object. If either of them is a counterpart, the flux ratio between TeV and X-ray is large, and HESS J1507-622 is a real dark particle accelerator.
New generation TeV gamma-ray telescopes have discovered many new sources, including several enigmatic unidentified TeV objects. HESS J0632+057 is a particularly interesting unidentified TeV source since: it is a point source, it has a possible hard-spectrum X-ray counterpart and a positionally consistent Be star, it has evidence of long-term VHE flux variability, and it is postulated to be a newly detected TeV/X-ray binary. We have obtained Swift X-ray telescope observations of this source from MJD 54857 to 54965, in an attempt to ascertain its nature and to investigate the hypothesis that its a previously unknown X-ray/TeV binary. Variability and spectral properties similar to those of the other 3 known X-ray/TeV binaries have been observed, with measured flux increases by factors of approximately 3. X-ray variability is present on multiple timescales including days to months; however, no clear signature of periodicity is present on the timescales probed by these data. If binary modulation is present and dominating the measured variability, then the period of the orbit is likely to be more than 54 days (half of this campaign), or it has a shorter period with a variable degree of flux modulation on successive high states. If the two high states measured to date are due to binary modulation, then the favored period is approximately 35-40 days. More observations are required to determine if this object is truly a binary system and to determine the extent that the measured variability is due to inter-orbit flaring effects or periodic binary modulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا