Topologically Robust Transport of Photons in a Synthetic Gauge Field


Abstract in English

Electronic transport in low dimensions through a disordered medium leads to localization. The addition of gauge fields to disordered media leads to fundamental changes in the transport properties. For example, chiral edge states can emerge in two-dimensional systems with a perpendicular magnetic field. Here, we implement a synthetic gauge field for photons using silicon-on-insulator technology. By determining the distribution of transport properties, we confirm the localized transport in the bulk and the suppression of localization in edge states, using the gold standard for localization studies. Our system provides a new platform to investigate transport properties in the presence of synthetic gauge fields, which is important both from the fundamental perspective of studying photonic transport and for applications in classical and quantum information processing.

Download