Localized Plasma Balls


Abstract in English

In this paper we numerically construct localised black hole solutions at the IR bottom of the confining geometry of the AdS soliton. These black holes should be thought as the finite size analogues of the domain wall solutions that have appeared previously in the literature. From the dual CFT point of view, these black holes correspond to finite size balls of deconfined plasma surrounded by the confining vacuum. The plasma ball solutions are parametrised by the temperature. For temperatures well above the deconfinement transition, the dual black holes are small and round and they are well-described by the asymptotically flat Schwarzschild solution. On the other hand, as the temperature approaches the deconfinement temperature, the black holes look like pancakes which are extended along the IR bottom of the space-time. On top of these backgrounds, we compute various probes of confinement/deconfinement such as temporal Wilson loops and entanglement entropy.

Download