Do you want to publish a course? Click here

Maximum drawdown, recovery, and momentum

74   0   0.0 ( 0 )
 Added by Jaehyung Choi
 Publication date 2014
  fields Financial
and research's language is English
 Authors Jaehyung Choi




Ask ChatGPT about the research

We empirically test predictability on asset price by using stock selection rules based on maximum drawdown and its consecutive recovery. In various equity markets, monthly momentum- and weekly contrarian-style portfolios constructed from these alternative selection criteria are superior not only in forecasting directions of asset prices but also in capturing cross-sectional return differentials. In monthly periods, the alternative portfolios ranked by maximum drawdown measures exhibit outperformance over other alternative momentum portfolios including traditional cumulative return-based momentum portfolios. In weekly time scales, recovery-related stock selection rules are the best ranking criteria for detecting mean-reversion. For the alternative portfolios and their ranking baskets, improved risk profiles in various reward-risk measures also imply more consistent prediction on the direction of assets in future. In the Carhart four-factor analysis, higher factor-neutral intercepts for the alternative strategies are another evidence for the robust prediction by the alternative stock selection rules.

rate research

Read More

We test the price momentum effect in the Korean stock markets under the momentum universe shrinkage to subuniverses of the KOSPI 200. Performance of the momentum strategy is not homogeneous with respect to change of the momentum universe. It is found that some submarkets generate the higher momentum returns than other universes do but large-size companies such as the KOSPI 50 components hinder the performance of the momentum strategy. The observation is also cross-checked with size portfolios and liquidity portfolios. Transactions by investor groups, in particular, the trading patterns by foreign investors can be a source of the momentum universe shrinkage effect in the momentum returns.
We show that a simple and intuitive three-parameter equation fits remarkably well the evolution of the gross domestic product (GDP) in current and constant dollars of many countries during times of recession and recovery. We then argue that this equation is the response function of the economy to isolated shocks, hence that it can be used to detect large and small shocks, including those which do not lead to a recession; we also discuss its predictive power. Finally, a two-sector toy model of recession and recovery illustrates how the severity and length of recession depends on the dynamics of transfer rate between the growing and failing parts of the economy.
Although both systems analyzed are described through two theories apparently different (quantum mechanics and game theory) it is shown that both are analogous and thus exactly equivalents. The quantum analogue of the replicator dynamics is the von Neumann equation. Quantum mechanics could be used to explain more correctly biological and economical processes. It could even encloses theories like games and evolutionary dynamics. We can take some concepts and definitions from quantum mechanics and physics for the best understanding of the behavior of economics and biology. Also, we could maybe understand nature like a game in where its players compete for a common welfare and the equilibrium of the system that they are members. All the members of our system will play a game in which its maximum payoff is the equilibrium of the system. They act as a whole besides individuals like they obey a rule in where they prefer to work for the welfare of the collective besides the individual welfare. A system where its members are in Nash Equilibrium (or ESS) is exactly equivalent to a system in a maximum entropy state. A system is stable only if it maximizes the welfare of the collective above the welfare of the individual. If it is maximized the welfare of the individual above the welfare of the collective the system gets unstable an eventually collapses. The results of this work shows that the globalization process has a behavior exactly equivalent to a system that is tending to a maximum entropy state and predicts the apparition of big common markets and strong common currencies that will find its equilibrium by decreasing its number until they get a state characterized by only one common currency and only one common market around the world.
443 - Damien Challet 2015
The total duration of drawdowns is shown to provide a moment-free, unbiased, efficient and robust estimator of Sharpe ratios both for Gaussian and heavy-tailed price returns. We then use this quantity to infer an analytic expression of the bias of moment-based Sharpe ratio estimators as a function of the return distribution tail exponent. The heterogeneity of tail exponents at any given time among assets implies that our new method yields significantly different asset rankings than those of moment-based methods, especially in periods large volatility. This is fully confirmed by using 20 years of historical data on 3449 liquid US equities.
79 - Victor Olkhov 2020
This paper presents probability distributions for price and returns random processes for averaging time interval {Delta}. These probabilities determine properties of price and returns volatility. We define statistical moments for price and returns random processes as functions of the costs and the volumes of market trades aggregated during interval {Delta}. These sets of statistical moments determine characteristic functionals for price and returns probability distributions. Volatilities are described by first two statistical moments. Second statistical moments are described by functions of second degree of the cost and the volumes of market trades aggregated during interval {Delta}. We present price and returns volatilities as functions of number of trades and second degree costs and volumes of market trades aggregated during interval {Delta}. These expressions support numerous results on correlations between returns volatility, number of trades and the volume of market transactions. Forecasting the price and returns volatilities depend on modeling the second degree of the costs and the volumes of market trades aggregated during interval {Delta}. Second degree market trades impact second degree of macro variables and expectations. Description of the second degree market trades, macro variables and expectations doubles the complexity of the current macroeconomic and financial theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا