Do you want to publish a course? Click here

Observing Properties of an Interacting Homogeneous Bose--Einstein Condensate: Heisenberg-Limited Momentum Spread, Interaction Energy and Free-Expansion Dynamics

229   0   0.0 ( 0 )
 Added by Zoran Hadzibabic
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the properties of an atomic Bose--Einstein condensate produced in an optical-box potential, using high-resolution Bragg spectroscopy. For a range of box sizes, up to $70~mu$m, we directly observe Heisenberg-limited momentum uncertainty of the condensed atoms. We measure the condensate interaction energy with a precision of $k_B times 100$ pK and study, both experimentally and numerically, the dynamics of its free expansion upon release from the box potential. All our measurements are in good agreement with theoretical expectations for a perfectly homogeneous condensate of spatial extent equal to the size of the box, which also establishes the uniformity of our optical-box system on a sub-nK energy scale.



rate research

Read More

We study the dynamics of an impurity embedded in a trapped Bose-Einstein condensate (Bose polaron), by recalling the quantum Brownian motion model. It is crucial that the model considers a parabolic trapping potential to resemble the experimental conditions. Thus, we detail here how the formal derivation changes due to the gas trap, in comparison to the homogeneous gas. We first find that the presence of a gas trap leads to a new form of the bath-impurity coupling constant and a larger degree in the super-ohmicity of the spectral density. This is manifested as a different dependence of the system dynamics on the past history. To quantify this, we introduce several techniques to compare the different amount of memory effects arising in the homogeneous and inhomogeneous gas. We find that it is higher in the second case. Moreover, we calculate the position variance of the impurity, represenitng a measurable quantity. We show that the impurity experiences super-diffusion and genuine position squeezing. Wdetail how both effects can be enhanced or inhibited by tuning the Bose-Einstein condensate trap frequency.
We propose experimentally feasible means for non-destructive thermometry of homogeneous Bose Einstein condensates in different spatial dimensions ($din{1,2,3}$). Our impurity based protocol suggests that the fundamental error bound on thermometry at the sub nano Kelvin domain depends highly on the dimension, in that the higher the dimension the better the precision. Furthermore, sub-optimal thermometry of the condensates by using measurements that are experimentally feasible is explored. We specifically focus on measuring position and momentum of the impurity that belong to the family of Gaussian measurements. We show that, generally, experimentally feasible measurements are far from optimal, except in 1D, where position measurements are indeed optimal. This makes realistic experiments perform very well at few nano Kelvin temperatures for all dimensions, and at sub nano Kelvin temperatures in the one dimensional scenario. These results take a significant step towards experimental realisation of probe-based quantum thermometry of Bose Einstein condensates, as it deals with them in one, two and three dimensions and uses feasible measurements applicable in current experimental setups.
We study the real-time dynamics of vortex lines in a large elongated Bose-Einstein condensate (BEC) of sodium atoms using a stroboscopic technique. Vortices are spontaneously produced via the Kibble-Zurek mechanism in a quench across the BEC transition and then they slowly precess keeping their orientation perpendicular to the long axis of the trap as expected for solitonic vortices in a highly anisotropic condensate. Good agreement with theoretical predictions is found for the precession period as a function of the orbit amplitude and the number of condensed atoms. In configurations with two or more vortex lines, we see signatures of vortex-vortex interaction in the shape and visibility of the orbits. In addition, when more than two vortices are present, their decay is faster than the thermal decay observed for one or two vortices. The possible role of vortex reconnection processes is discussed.
By developing a hydrodynamic formalism, we investigate the expansion dynamics of the single-minimum phase of a binary spin-orbit coupled Bose-Einstein condensate, after releasing from an external harmonic trap. We find that the expansion of the condensate along the direction of the spin-orbit coupling is dramatically slowed down near the transition between the single-minimum phase and the plane-wave phase. Such a slow expansion, resembling a form of an effective localization, is due to the quenching of the superfluid motion which results in a strong increase of the effective mass. In the single-minimum phase the anisotropic expansion of the Bose gas, which is spin balanced at equilibrium, is accompanied by the emergence of a local spin polarization. Our analytic scaling solutions emerging from hydrodynamic picture are compared with a full numerical simulation based on the coupled Gross-Pitaevskii equations.
We have measured the quantum depletion of an interacting homogeneous Bose-Einstein condensate, and confirmed the 70-year old theory of N.N. Bogoliubov. The observed condensate depletion is reversibly tuneable by changing the strength of the interparticle interactions. Our atomic homogeneous condensate is produced in an optical-box trap, the interactions are tuned via a magnetic Feshbach resonance, and the condensed fraction probed by coherent two-photon Bragg scattering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا