Do you want to publish a course? Click here

Properties of M31. IV: Candidate Luminous Blue Variables from PAndromeda

572   0   0.0 ( 0 )
 Added by Chien-Hsiu Lee Dr.
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform a study on the optical and infrared photometric properties of known luminous blue variables (LBVs) in M31 using the sample of LBV candidates from the Local Group Galaxy Survey (Massey et al. 2007). We find that M31 LBV candidates show photometric variability ranging from 0.375 to 1.576 magnitudes in rP1 during a three year time-span observed by the Pan-STARRS 1 Andromeda survey (PAndromeda). Their near-infrared colors also follow the distribution of Galactic LBVs as shown by Oksala et al. (2013). We use these features as selection criteria to search for unknown LBV candidates in M31. We thus devise a method to search for candidate LBVs using both optical color from the Local Group Galaxy Survey and infrared color from Two Micron All Sky Survey, as well as photometric variations observed by PAndromeda. We find four sources exhibiting common properties of known LBVs. These sources also exhibit UV emission as seen from GALEX, which is one of the previously adopted method to search for LBV candidates. The locations of the LBVs are well aligned withM31 spiral arms as seen in the UV light, suggesting they are evolved stars at young age given their high-mass nature. We compare these candidates with the latest Geneva evolutionary tracks, which show that our new M31 LBV candidates are massive evolved stars with an age of 10 to 100 million years.



rate research

Read More

In this series of papers we have presented the results of a spectroscopic survey of luminous and variable stars in the nearby spirals M31 and M33. In this paper, we present spectroscopy of 132 additional luminous stars, variables, and emission line objects. Most of the stars have emission line spectra, including LBVs and candidate LBVs, Fe II emission line stars and the B[e] supergiants, and the warm hypergiants. Many of these objects are spectroscopically similar and are often confused with each other. With this large spectroscopic data set including various types of emission line stars, we examine their similarities and differences and propose the following criteria that can be used to help distinguish these stars in future work: 1. The B[e] supergiants have emission lines of [O I] and [Fe II] in their spectra. Most of the spectroscopically confirmed sgB[e] stars also have warm circumstellar dust in their SEDs. 2. Confirmed LBVs do not have the [O I] emission lines in their spectra. Some LBVs have [Fe II] emission lines, but not all. Their SEDS shows free-free emission in the near-infrared but no evidence for warm dust. Their most important and defining characteristic is the S Dor-type variability. 3. The warm hypergiants spectroscopically resemble both the LBVs in their eruption or dense wind state and the B[e] supergiants. However, they are very dusty. Some have [Fe II] and [O I] emission in their spectra like the sgB[e] stars, but can be distinguished by their absorption line spectra characteristic of A and F-type supergiants. In contrast, the B[e] supergiant spectra have strong continua and few if any apparent absorption lines.
The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-detached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey (Massey et al. 2006) and select 13 candidates brighter than 20.5 magnitude in V. The relative physical parameters of these detached candidates are further characterized with Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor (2005). We will followup the detached eclipsing binaries spectroscopically and determine the distance to M31.
Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few ``true LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or $eta$ Car analogs and the S Dor cycle LBVs.
We report the discovery of two new Galactic candidate luminous blue variable (cLBV) stars via detection of circular shells (typical of known confirmed and cLBVs) and follow-up spectroscopy of their central stars. The shells were detected at 22 um in the archival data of the Mid-Infrared All Sky Survey carried out with the Wide-field Infrared Survey Explorer (WISE). Follow-up optical spectroscopy of the central stars of the shells conducted with the renewed Southern African Large Telescope (SALT) showed that their spectra are very similar to those of the well-known LBVs P Cygni and AG Car, and the recently discovered cLBV MN112, which implies the LBV classification for these stars as well. The LBV classification of both stars is supported by detection of their significant photometric variability: one of them brightened in the R- and I-bands by 0.68pm0.10 mag and 0.61pm0.04 mag, respectively, during the last 13-18 years, while the second one (known as Hen 3-1383) varies its B,V,R,I and K_s brightnesses by simeq 0.5-0.9 mag on time-scales from 10 days to decades. We also found significant changes in the spectrum of Hen 3-1383 on a timescale of simeq 3 months, which provides additional support for the LBV classification of this star. Further spectrophotometric monitoring of both stars is required to firmly prove their LBV status. We discuss a connection between the location of massive stars in the field and their fast rotation, and suggest that the LBV activity of the newly discovered cLBVs might be directly related to their possible runaway status.
We study five Luminous Blue Variable (LBV) candidates in the Andromeda galaxy and one more (MN112) in the Milky Way. We obtain the same-epoch near-infrared (NIR) and optical spectra on the 3.5-meter telescope at the Apache Point Observatory and on the 6-meter telescope of the SAO RAS. The candidates show typical LBV features in their spectra: broad and strong hydrogen lines, HeI, FeII, and [FeII] lines. We estimate the temperatures, reddening, radii and luminosities of the stars using their spectral energy distributions. Bolometric luminosities of the candidates are similar to those of known LBV stars in the Andromeda galaxy. One candidate, J004341.84+411112.0, demonstrates photometric variability (about 0.27 mag in V band), which allows us to classify it as a LBV. The star J004415.04+420156.2 shows characteristics typical for B[e]-supergiants. The star J004411.36+413257.2 is classified as FeII star. We confirm that the stars J004621.08+421308.2 and J004507.65+413740.8 are warm hypergiants. We for the first time obtain NIR spectrum of the Galactic LBV candidate MN112. We use both optical and NIR spectra of MN112 for comparison with similar stars in M31 and notice identical spectra and the same temperature in the J004341.84+411112.0. This allows us to confirm that MN112 is a LBV, which should show its brightness variability in longer time span observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا