Do you want to publish a course? Click here

The electric dipole moment of an electron in H-like ions in an electrostatic storage ring

115   0   0.0 ( 0 )
 Added by Oleg Andreev Yu
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Theoretical studies are presented how the electric dipole moment (EDM) of the electron in H-like ions in electrostatic storage rings can sensitively be determined. With the proposed experiments a new constraint of about $10^{-29}$ e cm for the electron EDM can be established what is by an order of magnitude more restrictive than the existing bounds. Experiments with H-like ions may provide a possibility to distinguish between the electron EDM effect and the effect of P,T violating interaction between the atomic electron and the nucleus.



rate research

Read More

A new, hybrid design is proposed to eliminate the main systematic errors in the frozen spin, storage ring measurement of the proton electric dipole moment. In this design, electric bending plates steer the particles, and magnetic focusing replaces electric. The magnetic focusing should permit simultaneous clock-wise and counter-clock-wise storage to cancel systematic errors related to the out-of-plane dipole electric field. Errors related to the quadrupole electric fields can be eliminated by successive runs of magnetic focusing with different strengths.
We investigate the merits of a measurement of the permanent electric dipole moment of the electron ($e$EDM) with barium monofluoride molecules, thereby searching for phenomena of CP violation beyond those incorporated in the Standard Model of particle physics. Although the BaF molecule has a smaller enhancement factor in terms of the effective electric field than other molecules used in current studies (YbF, ThO and ThF$^+$), we show that a competitive measurement is possible by combining Stark-deceleration, laser-cooling and an intense primary cold source of BaF molecules. With the long coherent interaction times obtainable in a cold beam of BaF, a sensitivity of $5times10^{-30}$ e$cdot$cm for an $e$EDM is feasible. We describe the rationale, the challenges and the experimental methods envisioned to achieve this target.
We apply near-threshold laser photodetachment to characterize the rotational quantum level distribution of OH$^-$ ions stored in the cryogenic ion-beam storage ring, DESIREE, at Stockholm University. We find that the stored ions relax to a rotational temperature of 13.4$pm$0.2 K with 94.9$pm$0.3 % of the ions in the rotational ground state. This is consistent with the storage ring temperature of 13.5$pm$0.5 K as measured with eight silicon diodes, but in contrast to all earlier studies in cryogenic traps and rings where the rotational temperatures were always much higher than those of the storage devices at their lowest temperatures. Furthermore, we actively modify the rotational distribution through selective photodetachment to produce an OH$^-$ beam where 99.1$pm$0.1 % of approximately one million stored ions are in the $J$=0 rotational ground state.
A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of $10^{-29}ecdot$cm by using polarized magic momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000~TeV.
Permanent electric dipole moments (EDMs) of fundamental particles such as the electron are signatures of parity and time-reversal violation due to physics beyond the standard model. EDM measurements probe new physics at energy scales well beyond the reach of present-day colliders. Recent advances in assembling molecules from ultracold atoms have opened up new opportunities for improving the reach of EDM experiments. But better measurement techniques, that are not limited by the magnetic field sensitivity of such molecules, are necessary before these opportunities can be fully exploited. We present a technique that takes advantage of magnetically-insensitive hyperfine clock transitions in polar molecules, and offers new ways to improve both the precision and accuracy of EDM searches with ultracold assembled molecules.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا