Speed and Reliability of Nanomagnetic Logic Technology


Abstract in English

Nanomagnetic logic is an energy efficient computing architecture that relies on the dipole field coupling of neighboring magnets to transmit and process binary information. In this architecture, nanomagnet chains act as local interconnects. To assess the merits of this technology, the speed and reliability of magnetic signal transmission along these chains must be experimentally determined. In this work, time-resolved pump-probe x-ray photo-emission electron microscopy is used to observe magnetic signal transmission along a chain of nanomagnets. We resolve successive error-free switching events in a single nanomagnet chain at speeds on the order of 100 ps per nanomagnet, consistent with predictions based on micromagnetic modeling. Errors which disrupt transmission are also observed. We discuss the nature of these errors, and approaches for achieving reliable operation.

Download