Do you want to publish a course? Click here

Model-independent determination of the gluon condensate in four-dimensional SU(3) gauge theory

151   0   0.0 ( 0 )
 Added by Gunnar S. Bali
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We determine the non-perturbative gluon condensate of four-dimensional SU(3) gauge theory in a model independent way. This is achieved by carefully subtracting high order perturbation theory results from non-perturbative lattice QCD determinations of the average plaquette. No indications of dimension two condensates are found. The value of the gluon condensate turns out to be of a similar size as the intrinsic ambiguity inherent to its definition.



rate research

Read More

We compute nonequilibrium dynamics of plasma instabilities in classical-statistical lattice gauge theory in 3+1 dimensions. The simulations are done for the first time for the SU(3) gauge group relevant for quantum chromodynamics. We find a qualitatively similar behavior as compared to earlier investigations in SU(2) gauge theory. The characteristic growth rates are about 25 % lower for given energy density, such that the isotropization process is slower. Measured in units of the characteristic screening mass, the primary growth rate is independent of the number of colors.
We investigate the quantum entanglement entropy for the four-dimensional Euclidean SU(3) gauge theory. We present the first non-perturbative calculation of the entropic $c$-function ($C(l)$) of SU(3) gauge theory in lattice Monte Carlo simulation using the replica method. For $0 leqslant l leqslant 0.7$~fm, where $l$ is the length of the subspace, the entropic $c$-function is almost constant, indicating conformally invariant dynamics. The value of the constant agrees with that perturbatively obtained from free gluons, with 20 % discrepancy. When $l$ is close to the Hadronic scale, the entropic $c$-function decreases smoothly, and it is consistent with zero within error bars at $l gtrsim 0.9$ fm.
We determine the time evolution of fluctuations of the Polyakov loop after a quench into the deconfined phase of SU(3) gauge theory from a simple classical relativistic Lagrangian. We compare the structure factors, which indicate spinodal decomposition followed by relaxation, to those obtained via Markov Chain Monte Carlo techniques in SU(3) lattice gauge theory. We find that the time when the structure factor peaks diverges like $sim 1/k^2$ in the long-wavelength limit. This is due to formation of competing Z(3) domains for configurations where the Polyakov loop exhibits non-perturbatively large variations in space, which delay thermalization of long wavelength modes. For realistic temperatures, and away from the extreme weak-coupling limit, we find that even modes with $k$ on the order of $T$ experience delayed thermalization. Relaxation times of very long wavelength modes are found to be on the order of the size of the system; thus, the dynamics of competing domains should accompany the hydrodynamic description of the deconfined vacuum.
The gluon condensate, $langle frac{alpha_s}{pi} G^2 rangle$, i.e. the leading order power correction in the operator product expansion of current correlators in QCD at short distances, is determined from $e^+ e^-$ annihilation data in the charm-quark region. This determination is based on finite energy QCD sum rules, weighted by a suitable integration kernel to (i) account for potential quark-hadron duality violations, (ii) enhance the contribution of the well known first two narrow resonances, the $J/psi$ and the $psi(2S)$, while quenching substantially the data region beyond, and (iii) reinforce the role of the gluon condensate in the sum rules. By using a kernel exhibiting a singularity at the origin, the gluon condensate enters the Cauchy residue at the pole through the low energy QCD expansion of the vector current correlator. These features allow for a reasonably precise determination of the condensate, i.e. $langle frac{alpha_s}{pi} G^2 rangle =0.037 ,pm, 0.015 ;{mbox{GeV}}^4$.
84 - Marco Frasca 2017
We obtain the next-to-leading order correction to the spectrum of a SU(N) Yang-Mills theory in four dimensions and we show agreement well-below 1% with respect to the lattice computations for the ground state and one of the higher states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا