Do you want to publish a course? Click here

Distribution of electrons and holes in cuprate superconductors as determined from $^{17}$O and $^{63}$Cu nuclear magnetic resonance

308   0   0.0 ( 0 )
 Added by Juergen Haase
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The distribution of electrons and holes in the CuO$_2$ plane of the high-temperature superconducting cuprates is determined with nuclear magnetic resonance through the quadrupole splittings of $^{17}$O and $^{63}$Cu. Based on new data for single crystals of electron-doped Pr$_{2-x}$Ce$_x$CuO$_4$(x=0, 0.05, 0.10, 0.15) as well as Nd$_{2-x}$Ce$_x$CuO$_4$ (x=0, 0.13) the changes in hole contents $n_d$ of Cu 3d$(x^2-y^2)$ and $n_p$ of O 2$p_sigma$ orbitals are determined and they account for the stoichiometrically doped charges, similar to hole-doped lsco. It emerges that while $n_d+2n_p=1$ in all parent materials as expected, $n_d$ and $n_p$ vary substantially between different groups of materials. Doping holes increases predominantly $n_p$, but also $n_d$. To the contrary, doping electrons predominantly decreases $n_d$ and only slightly $n_p$. However, $n_p$ for the electron doped systems is higher than that in hole doped La$_{1.85}$Sr$_{0.15}$CuO$_4$. Cuprates with the highest maximum $T_{rm c}$s appear to have a comparably low $n_d$ while, at the same time, $n_p$ is very high. The rather high oxygen hole content of the Pr$_2$CuO$_4$ and Nd$_2$CuO$_4$ with the low $n_d$ seems to make them ideal candidates for hole doping to obtain the highest $T_{rm c}$.



rate research

Read More

Nuclear relaxation is an important thermodynamic probe of electronic excitations, in particular in conducting and superconducting systems. Here, an empirical phenomenology based on all available literature data for planar Cu in hole-doped cuprates is developed. It is found that most of the seemingly different relaxation rates among the systems are due to a temperature independent anisotropy that affects the mostly measured $1/T_{1parallel}$, the rate with an external magnetic field along the crystal $c$-axis, while $1/T_{1perp}$ is largely independent on doping and material above the critical temperature of superconductivity ($T_c$). This includes very strongly overdoped systems that show Fermi liquid behavior and obey the Korringa law. Below $T_c$ the relaxation rates are similar, as well, if plotted against the reduced temperature $T/T_c$. Thus, planar Cu nuclear relaxation is governed by a simple, dominant mechanism that couples the nuclei with varying anisotropy to a rather ubiquitous bath of electronic excitations that appear Fermi liquid-like irrespective of doping and family. In particular, there is no significant enhancement of the relaxation due to electronic spin fluctuations, different from earlier conclusions. Only the La$_{2-x}$Sr$_x$CuO$_4$ family appears to be an outlier as additional relaxation is present, however, the anisotropy remains temperature independent. Also systems with very low doping levels, for which there is a lack of data, may behave differently.
We have performed $^{63}$Cu nuclear magnetic resonance/nuclear quadrupole resonance measurements to investigate the magnetic and superconducting (SC) properties on a superconductivity dominant ($S$-type) single crystal of CeCu$_2$Si$_2$. Although the development of antiferromagnetic (AFM) fluctuations down to 1~K indicated that the AFM criticality was close, Korringa behavior was observed below 0.8~K, and no magnetic anomaly was observed above $T_{rm c} sim$ 0.6 K. These behaviors were expected in $S$-type CeCu$_2$Si$_2$. The temperature dependence of the nuclear spin-lattice relaxation rate $1/T_1$ at zero field was almost identical to that in the previous polycrystalline samples down to 130~mK, but the temperature dependence deviated downward below 120~mK. In fact, $1/T_1$ in the SC state could be fitted with the two-gap $s_{pm}$-wave rather than the two-gap $s_{++}$-wave model down to 90~mK. Under magnetic fields, the spin susceptibility in both directions clearly decreased below $T_{rm c}$, indicative of the formation of spin singlet pairing. The residual part of the spin susceptibility was understood by the field-induced residual density of states evaluated from $1/T_1T$, which was ascribed to the effect of the vortex cores. No magnetic anomaly was observed above the upper critical field $H_{c2}$, but the development of AFM fluctuations was observed, indicating that superconductivity was realized in strong AFM fluctuations.
The phase diagram of the superconducting cuprates is often used to show how their electronic properties change as a function of the mean doping level, i.e., the average hole content of the CuO$_2$ plane. In Nuclear Magnetic Resonance (NMR) experiments average doping, as well as the distribution of these holes between planar Cu and O reveals itself through the quadrupole splittings of the $^{63,65}$Cu and $^{17}$O NMR. Here we argue based on all published NMR data available to us in favor a new type of phase diagram that has the planar oxygen quadrupole splitting and with it the planar oxygen hole content as abscissa rather than the average hole content of the CuO$_2$ plane. In such a plot the superconducting domes of the different cuprate families are shifted horizontally according to their maximum critical temperature $T_{rm c,max}$ set by the chemistry of the parent material, which determines its oxygen hole content. The higher the O hole content the higher $T_{rm c,max}$ that can be achieved by actual doping. These findings also offer a strategy for finding cuprates with higher $T_{rm c,max}$.
The influence of a uniform external magnetic field on the dynamical spin response of cuprate superconductors in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that the magnetic scattering around low and intermediate energies is dramatically changed with a modest external magnetic field. With increasing the external magnetic field, although the incommensurate magnetic scattering from both low and high energies is rather robust, the commensurate magnetic resonance scattering peak is broadened. The part of the spin excitation dispersion seems to be an hourglass-like dispersion, which breaks down at the heavily low energy regime. The theory also predicts that the commensurate resonance scattering at zero external magnetic field is induced into the incommensurate resonance scattering by applying an external magnetic field large enough.
93 - Yiqun Liu , Yu Lan , Yingping Mou 2020
The characteristic features of the renormalization of the electrons in the bilayer cuprate superconductors are investigated within the kinetic-energy driven superconductivity. It is shown that the quasiparticle excitation spectrum is split into its bonding and antibonding components due to the presence of the bilayer coupling, with each component that is independent. However, in the underdoped and optimally doped regimes, although the bonding and antibonding electron Fermi surface (EFS) contours deriving from the bonding and antibonding layers are truncated to form the bonding and antibonding Fermi arcs, almost all spectral weights in the bonding and antibonding Fermi arcs are reduced to the tips of the bonding and antibonding Fermi arcs, which in this case coincide with the bonding and antibonding hot spots. These hot spots connected by the scattering wave vectors ${bf q}_{i} $ construct an octet scattering model, and then the enhancement of the quasiparticle scattering processes with the scattering wave vectors ${bf q}_{i}$ is confirmed via the result of the autocorrelation of the ARPES spectral intensities. Moreover, the peak-dip-hump (PDH) structure developed in each component of the quasiparticle excitation spectrum along the corresponding EFS is directly related with the peak structure in the quasiparticle scattering rate except for at around the hot spots, where the PDH structure is caused mainly by the bilayer coupling. Although the kink in the quasiparticle dispersion is present all around EFS, when the momentum moves away from the node to the antinode, the kink energy smoothly decreases, while the dispersion kink becomes more pronounced, and in particular, near the cut close to the antinode, develops into a break separating of the fasting dispersing high-energy part of the quasiparticle excitation spectrum from the slower dispersing low-energy part.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا