Do you want to publish a course? Click here

Reward-risk momentum strategies using classical tempered stable distribution

176   0   0.0 ( 0 )
 Added by Jaehyung Choi
 Publication date 2014
  fields Financial
and research's language is English




Ask ChatGPT about the research

We implement momentum strategies using reward-risk measures as ranking criteria based on classical tempered stable distribution. Performances and risk characteristics for the alternative portfolios are obtained in various asset classes and markets. The reward-risk momentum strategies with lower volatility levels outperform the traditional momentum strategy regardless of asset class and market. Additionally, the alternative portfolios are not only less riskier in risk measures such as VaR, CVaR and maximum drawdown but also characterized by thinner downside tails. Similar patterns in performance and risk profile are also found at the level of each ranking basket in the reward-risk portfolios. Higher factor-neutral returns achieved by the reward-risk momentum strategies are statistically significant and large portions of the performances are not explained by the Carhart four-factor model.



rate research

Read More

We study portfolio optimization of four major cryptocurrencies. Our time series model is a generalized autoregressive conditional heteroscedasticity (GARCH) model with multivariate normal tempered stable (MNTS) distributed residuals used to capture the non-Gaussian cryptocurrency return dynamics. Based on the time series model, we optimize the portfolio in terms of Foster-Hart risk. Those sophisticated techniques are not yet documented in the context of cryptocurrency. Statistical tests suggest that the MNTS distributed GARCH model fits better with cryptocurrency returns than the competing GARCH-type models. We find that Foster-Hart optimization yields a more profitable portfolio with better risk-return balance than the prevailing approach.
We introduce diversified risk parity embedded with various reward-risk measures and more generic allocation rules for portfolio construction. We empirically test advanced reward-risk parity strategies and compare their performance with an equally-weighted risk portfolio in various asset universes. The reward-risk parity strategies we tested exhibit consistent outperformance evidenced by higher average returns, Sharpe ratios, and Calmar ratios. The alternative allocations also reflect less downside risks in Value-at-Risk, conditional Value-at-Risk, and maximum drawdown. In addition to the enhanced performance and reward-risk profile, transaction costs can be reduced by lowering turnover rates. The Carhart four-factor analysis also indicates that the diversified reward-risk parity allocations gain superior performance.
In this paper, we solve portfolio rebalancing problem when security returns are represented by uncertain variables considering transaction costs. The performance of the proposed model is studied using constant-proportion portfolio insurance (CPPI) as rebalancing strategy. Numerical results showed that uncertain parameters and different belief degrees will produce different efficient frontiers, and affect the performance of the proposed model. Moreover, CPPI strategy performs as an insurance mechanism and limits downside risk in bear markets while it allows potential benefit in bull markets. Finally, using a globally optimization solver and genetic algorithm (GA) for solving the model, we concluded that the problem size is an important factor in solving portfolio rebalancing problem with uncertain parameters and to gain better results, it is recommended to use a meta-heuristic algorithm rather than a global solver.
The risk and return profiles of a broad class of dynamic trading strategies, including pairs trading and other statistical arbitrage strategies, may be characterized in terms of excursions of the market price of a portfolio away from a reference level. We propose a mathematical framework for the risk analysis of such strategies, based on a description in terms of price excursions, first in a pathwise setting, without probabilistic assumptions, then in a Markovian setting. We introduce the notion of delta-excursion, defined as a path which deviates by delta from a reference level before returning to this level. We show that every continuous path has a unique decomposition into delta-excursions, which is useful for the scenario analysis of dynamic trading strategies, leading to simple expressions for the number of trades, realized profit, maximum loss and drawdown. As delta is decreased to zero, properties of this decomposition relate to the local time of the path. When the underlying asset follows a Markov process, we combine these results with Itos excursion theory to obtain a tractable decomposition of the process as a concatenation of independent delta-excursions, whose distribution is described in terms of Itos excursion measure. We provide analytical results for linear diffusions and give new examples of stochastic processes for flexible and tractable modeling of excursions. Finally, we describe a non-parametric scenario simulation method for generating paths whose excursion properties match those observed in empirical data.
In this paper, we study general monetary risk measures (without any convexity or weak convexity). A monetary (respectively, positively homogeneous) risk measure can be characterized as the lower envelope of a family of convex (respectively, coherent) risk measures. The proof does not depend on but easily leads to the classical representation theorems for convex and coherent risk measures. When the law-invariance and the SSD (second-order stochastic dominance)-consistency are involved, it is not the convexity (respectively, coherence) but the comonotonic convexity (respectively, comonotonic coherence) of risk measures that can be used for such kind of lower envelope characterizations in a unified form. The representation of a law-invariant risk measure in terms of VaR is provided.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا