Do you want to publish a course? Click here

AMIDAS-II: Upgrade of the AMIDAS Package and Website for Direct Dark Matter Detection Experiments and Phenomenology

142   0   0.0 ( 0 )
 Added by Chung-Lin Shan
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we give a detailed users guide to the AMIDAS (A Model-Independent Data Analysis System) package and website, which is developed for online simulations and data analyses for direct Dark Matter detection experiments and phenomenology. Recently, the whole AMIDAS package and website system has been upgraded to the second phase: AMIDAS-II, for including the new developed Bayesian analysis technique. AMIDAS has the ability to do full Monte Carlo simulations as well as to analyze real/pseudo data sets either generated by another event generating programs or recorded in direct DM detection experiments. Moreover, the AMIDAS-II package can include several user-defined functions into the main code: the (fitting) one-dimensional WIMP velocity distribution function, the nuclear form factors for spin-independent and spin-dependent cross sections, artificial/experimental background spectrum for both of simulation and data analysis procedures, as well as different distribution functions needed in Bayesian analyses.



rate research

Read More

The next generation of large scale WIMP direct detection experiments have the potential to go beyond the discovery phase and reveal detailed information about both the particle physics and astrophysics of dark matter. We report here on early results arising from the development of a detailed numerical code modeling the proposed DARWIN detector, involving both liquid argon and xenon targets. We incorporate realistic detector physics, particle physics and astrophysical uncertainties and demonstrate to what extent two targets with similar sensitivities can remove various degeneracies and allow a determination of dark matter cross sections and masses while also probing rough aspects of the dark matter phase space distribution. We find that, even assuming dominance of spin-independent scattering, multi-ton scale experiments still have degeneracies that depend sensitively on the dark matter mass, and on the possibility of isospin violation and inelasticity in interactions. We find that these experiments are best able to discriminate dark matter properties for dark matter masses less than around 200 GeV. In addition, and somewhat surprisingly, the use of two targets gives only a small improvement (aside from the advantage of different systematics associated with any claimed signal) in the ability to pin down dark matter parameters when compared with one target of larger exposure.
We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.
329 - Yao-Yuan Mao 2013
Several direct detection experiments, including recently CDMS-II, have reported signals consistent with 5 to 10 GeV dark matter (DM) that appear to be in tension with null results from XENON and LUX experiments; these indicate a careful review of the theoretical basis, including the galactic DM velocity distribution function (VDF). We establish a VDF parameter space from DM-only cosmological simulations and illustrate that seemingly contradictory experimental results can be made consistent within this parameter space. Future experimental limits should be reported after they are marginalized over a range of VDF parameters.
In the past decades, several detector technologies have been developed with the quest to directly detect dark matter interactions and to test one of the most important unsolved questions in modern physics. The sensitivity of these experiments has improved with a tremendous speed due to a constant development of the detectors and analysis methods, proving uniquely suited devices to solve the dark matter puzzle, as all other discovery strategies can only indirectly infer its existence. Despite the overwhelming evidence for dark matter from cosmological indications at small and large scales, a clear evidence for a particle explaining these observations remains absent. This review summarises the status of direct dark matter searches, focussing on the detector technologies used to directly detect a dark matter particle producing recoil energies in the keV energy scale. The phenomenological signal expectations, main background sources, statistical treatment of data and calibration strategies are discussed.
181 - Laura Baudis 2014
Cosmological observations and the dynamics of the Milky Way provide ample evidence for an invisible and dominant mass component. This so-called dark matter could be made of new, colour and charge neutral particles, which were non-relativistic when they decoupled from ordinary matter in the early universe. Such weakly interacting massive particles (WIMPs) are predicted to have a non-zero coupling to baryons and could be detected via their collisions with atomic nuclei in ultra-low background, deep underground detectors. Among these, detectors based on liquefied noble gases have demonstrated tremendous discovery potential over the last decade. After briefly introducing the phenomenology of direct dark matter detection, I will review the main properties of liquefied argon and xenon as WIMP targets and discuss sources of background. I will then describe existing and planned argon and xenon detectors that employ the so-called single- and dual-phase detection techniques, addressing their complementarity and science reach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا