Guaranteed Bounds for General Approximate Dynamic Programming


Abstract in English

In this paper, we will develop a systematic approach to deriving guaranteed bounds for approximate dynamic programming (ADP) schemes in optimal control problems. Our approach is inspired by our recent results on bounding the performance of greedy strategies in optimization of string-submodular functions over a finite horizon. The approach is to derive a string-submodular optimization problem, for which the optimal strategy is the optimal control solution and the greedy strategy is the ADP solution. Using this approach, we show that any ADP solution achieves a performance that is at least a factor of $beta$ of the performance of the optimal control solution, which satisfies Bellmans optimality principle. The factor $beta$ depends on the specific ADP scheme, as we will explicitly characterize. To illustrate the applicability of our bounding technique, we present examples of ADP schemes, including the popular rollout method.

Download