A priori estimates for boundary value elliptic problems via first order systems


Abstract in English

We prove a number of textit{a priori} estimates for weak solutions of elliptic equations or systems with vertically independent coefficients in the upper-half space. These estimates are designed towards applications to boundary value problems of Dirichlet and Neumann type in various topologies. We work in classes of solutions which include the energy solutions. For those solutions, we use a description using the first order systems satisfied by their conormal gradients and the theory of Hardy spaces associated with such systems but the method also allows us to design solutions which are not necessarily energy solutions. We obtain precise comparisons between square functions, non-tangential maximal functions and norms of boundary trace. The main thesis is that the range of exponents for such results is related to when those Hardy spaces (which could be abstract spaces) are identified to concrete spaces of tempered distributions. We consider some adapted non-tangential sharp functions and prove comparisons with square functions. We obtain boundedness results for layer potentials, boundary behavior, in particular strong limits, which is new, and jump relations. One application is an extrapolation for solvability a la {v{S}}ne{ui}berg. Another one is stability of solvability in perturbing the coefficients in $L^infty$ without further assumptions. We stress that our results do not require De Giorgi-Nash assumptions, and we improve the available ones when we do so.

Download