No Arabic abstract
We demonstrate that for a cosmic variance limited experiment, CMB E polarization alone places stronger constraints on cosmological parameters than CMB temperature. For example, we show that EE can constrain parameters better than TT by up to a factor 2.8 when a multipole range of l=30-2500 is considered. We expose the physical effects at play behind this remarkable result and study how it depends on the multipole range included in the analysis. In most relevant cases, TE or EE surpass the TT based cosmological constraints. This result is important as the small scale astrophysical foregrounds are expected to have a much reduced impact on polarization, thus opening the possibility of building cleaner and more stringent constraints of the LCDM model. This is relevant specially for proposed future CMB satellite missions, such as CORE or PRISM, that are designed to be cosmic variance limited in polarization till very large multipoles. We perform the same analysis for a Planck-like experiment, and conclude that even in this case TE alone should determine the constraint on $Omega_ch^2$ better than TT by 15%, while determining $Omega_bh^2$, $n_s$ and $theta$ with comparable accuracy. Finally, we explore a few classical extensions of the LCDM model and show again that CMB polarization alone provides more stringent constraints than CMB temperature in case of a cosmic variance limited experiment.
We demonstrate that the cosmic microwave background (CMB) temperature-polarization cross-correlation provides accurate and robust constraints on cosmological parameters. We compare them with the results from temperature or polarization and investigate the impact of foregrounds, cosmic variance, and instrumental noise. This analysis makes use of the Planck high-multipole HiLLiPOP likelihood based on angular power spectra, which takes into account systematics from the instrument and foreground residuals directly modelled using Planck measurements. The temperature-polarization correlation (TE) spectrum is less contaminated by astrophysical emissions than the temperature power spectrum (TT), allowing constraints that are less sensitive to foreground uncertainties to be derived. For {Lambda}CDM parameters, TE gives very competitive results compared to TT. For basic {Lambda}CDM model extensions (such as AL, {Sigma}m{ u}, or Neff ), it is still limited by the instrumental noise level in the polarization maps.
We study to what extent the spectral index $n_s$ and the tensor-to-scalar ratio $r$ determine the field excursion $Deltaphi$ during inflation. We analyse the possible degeneracy of $Delta phi$ by comparing three broad classes of inflationary models, with different dependence on the number of e-foldings $N$, to benchmark models of chaotic inflation with monomial potentials. The classes discussed cover a large set of inflationary single field models. We find that the field range is not uniquely determined for any value of $(n_s, r)$; one can have the same predictions as chaotic inflation and a very different $Delta phi$. Intriguingly, we find that the field range cannot exceed an upper bound that appears in different classes of models. Finally, $Delta phi$ can even become sub-Planckian, but this requires to go beyond the single-field slow-roll paradigm.
Madam is a CMB map-making code, designed to make temperature and polarization maps of time-ordered data of total power experiments like Planck. The algorithm is based on the destriping technique, but it also makes use of known noise properties in the form of a noise prior. The method in its early form was presented in an earlier work by Keihanen et al. (2005). In this paper we present an update of the method, extended to non-averaged data, and include polarization. In this method the baseline length is a freely adjustable parameter, and destriping can be performed at a different map resolution than that of the final maps. We show results obtained with simulated data. This study is related to Planck LFI activities.
We present a first internal delensing of CMB maps, both in temperature and polarization, using the public foreground-cleaned (SMICA) Planck 2015 maps. After forming quadratic estimates of the lensing potential, we use the corresponding displacement field to undo the lensing on the same data. We build differences of the delensed spectra to the original data spectra specifically to look for delensing signatures. After taking into account reconstruction noise biases in the delensed spectra, we find an expected sharpening of the power spectrum acoustic peaks with a delensing efficiency of $29,%$ ($TT$) $25,%$ ($TE$) and $22,%$ ($EE$). The detection significance of the delensing effects is very high in all spectra: $12,sigma$ in $EE$ polarization; $18,sigma$ in $TE$; and $20,sigma$ in $TT$. The null hypothesis of no lensing in the maps is rejected at $26,sigma$. While direct detection of the power in lensing $B$-modes themselves is not possible at high significance at Planck noise levels, we do detect (at $4.5,sigma$ under the null hypothesis) delensing effects in the $B$-mode map, with $7,%$ reduction in lensing power. Our results provide a first demonstration of polarization delensing, and generally of internal CMB delensing, and stand in agreement with the baseline $Lambda$CDM Planck 2015 cosmology expectations.
We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of $1.3$. The map noise levels in the four regions are between 11 and 17 $mu$K-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range $200<ell<3000$, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sources in the EE data at $ell<9000$, the Poisson tail of the EE power spectrum due to polarized point sources has an amplitude less than $2.4$ $mu$K$^2$ at $ell = 3000$ at 95% confidence. Finally, we report that the Crab Nebula, an important polarization calibration source at microwave frequencies, has 8.7% polarization with an angle of $150.7^circ pm 0.6^circ$ when smoothed with a $5$ Gaussian beam.