No Arabic abstract
The results obtained in the search for possible diurnal effect in the single-hit low energy data collected by DAMA/LIBRA-phase1 (total exposure: 1.04 ton x yr) deep underground at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. are presented. At the present level of sensitivity the presence of any significant diurnal variation and of diurnal time structures in the data can be excluded for both the cases of solar and sidereal time. In particular, the diurnal modulation amplitude expected, because of the Earth diurnal motion, on the basis of the DAMA Dark Matter annual modulation results is below the present sensitivity.
The results obtained with the total exposure of 1.04 ton x yr collected by DAMA/LIBRA-phase1 deep underground at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. during 7 annual cycles (i.e. adding a further 0.17 ton x yr exposure) are presented. The DAMA/LIBRA-phase1 data give evidence for the presence of Dark Matter (DM) particles in the galactic halo, on the basis of the exploited model independent DM annual modulation signature by using highly radio-pure NaI(Tl) target, at 7.5 sigma C.L.. Including also the first generation DAMA/NaI experiment (cumulative exposure 1.33 ton x yr, corresponding to 14 annual cycles), the C.L. is 9.3 sigma and the modulation amplitude of the single-hit events in the (2-6) keV energy interval is: (0.0112 pm 0.0012) cpd/kg/keV; the measured phase is (144 pm 7) days and the measured period is (0.998 pm 0.002) yr, values well in agreement with those expected for DM particles. No systematic or side reaction able to mimic the exploited DM signature has been found or suggested by anyone over more than a decade.
In the present paper the results obtained in the investigation of possible diurnal effects for low-energy single-hit scintillation events of DAMA/LIBRA-phase1 (1.04 ton $times$ yr exposure) have been analysed in terms of an effect expected in case of Dark Matter (DM) candidates inducing nuclear recoils and having high cross-section with ordinary matter, which implies low DM local density in order to fulfill the DAMA/LIBRA DM annual modulation results. This effect is due to the different Earth depths crossed by those DM candidates during the sidereal day.
DAMA/LIBRA is running at the Gran Sasso National Laboratory of the I.N.F.N.. Here the results obtained with a further exposure of 0.34 ton x yr are presented. They refer to two further annual cycles collected one before and one after the first DAMA/LIBRA upgrade occurred on September/October 2008. The cumulative exposure with those previously released by the former DAMA/NaI and by DAMA/LIBRA is now 1.17 ton x yr, corresponding to 13 annual cycles. The data further confirm the model independent evidence of the presence of Dark Matter (DM) particles in the galactic halo on the basis of the DM annual modulation signature (8.9 sigma C.L. for the cumulative exposure). In particular, with the cumulative exposure the modulation amplitude of the single-hit events in the (2 -- 6) keV energy interval measured in NaI(Tl) target is (0.0116 +- 0.0013) cpd/kg/keV; the measured phase is (146 +- 7) days and the measured period is (0.999 +- 0.002) yr, values well in agreement with those expected for the DM particles.
The DAMA/LIBRA experiment, running at the Gran Sasso National Laboratory of the I.N.F.N. in Italy, has a sensitive mass of about 250 kg highly radiopure NaI(Tl). It is mainly devoted to the investigation of Dark Matter (DM) particles in the Galactic halo by exploiting the model independent DM annual modulation signature. The present DAMA/LIBRA experiment and the former DAMA/NaI one (the first generation experiment having an exposed mass of about 100 kg) have released so far results corresponding to a total exposure of 1.17 ton yr over 13 annual cycles. They provide a model independent evidence of the presence of DM particles in the galactic halo at 8.9 sigma C.L.. A short summary of the obtained results is presented and future perspectives of the experiment mentioned.
The DAMA/LIBRA set-up (about 250 kg highly radiopure NaI(Tl) sensitive mass) is running at the Gran Sasso National Laboratory of the I.N.F.N.. The first DAMA/LIBRA results confirm the evidence for the presence of a Dark Matter particle component in the galactic halo, as pointed out by the former DAMA/NaI set-up; cumulatively the data support such evidence at 8.2 sigma C.L. and satisfy all the many peculiarities of the Dark Matter annual modulation signature. The main aspects and prospects of this model independent experimental approach will be outlined.