Late stages of stellar evolution are characterized by copious mass-loss events whose signature is the formation of circumstellar envelopes (CSE). Planck multi-frequency measurements have provided relevant information on a sample of Galactic planetary nebulae (PNe) in the important and relatively unexplored observational band between 30 and 857GHz. Planck enables the assembly of comprehensive PNe spectral energy distributions (SEDs) from radio {bf to} far-infrared frequencies. Modelling of the derived SEDs provides us with information on physical properties of CSEs and the mass content of both main components: ionised gas, traced by the free-free emission at cm--mm waves; and thermal dust, traced by the millimetre and far-IR emission. In particular, the amount of ionised gas and dust has been derived here. Such quantities have also been estimated for the very young PN CRL618, where the strong variability observed in its radio and millimetre emission has previously prevented the construction of its SED. A morphological study of the Helix Nebula has also been performed. Planck maps reveal, for the first time, the spatial distribution of the dust inside the envelope, allowing us to identify different components, the most interesting of which is a very extended component (up to 1pc) that may be related to a region where the slow expanding envelope is interacting with the surrounding interstellar medium.